工程力学 ›› 2020, Vol. 37 ›› Issue (5): 55-63.doi: 10.6052/j.issn.1000-4750.2018.06.0367

• 土木工程学科 • 上一篇    下一篇

高延性混凝土加固RC梁抗剪性能试验研究

邓明科1, 李琦琦1, 马福栋1, 黄政2   

  1. 1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055;
    2. 中天建设集团有限公司西南公司 四川, 成都 610041
  • 收稿日期:2018-06-30 修回日期:2018-10-14 出版日期:2020-05-25 发布日期:2019-04-16
  • 通讯作者: 邓明科(1979-),四川南充人,教授,博士,博导,从事新材料与新型结构体系研究(E-mail:dengmingke@126.com). E-mail:dengmingke@126.com
  • 作者简介:李琦琦(1993-),陕西咸阳人,硕士生,从事建筑结构抗震及抗剪研究(E-mail:liqiqi4028@126.com);马福栋(1991-),山东济南人,博士生,从事建筑结构抗震及抗剪研究(E-mail:mafudongmfd@126.com);黄政(1991-),江西赣州人,硕士,从事建筑结构抗震及抗剪研究(E-mail:649786469@qq.com).
  • 基金资助:
    国家自然科学基金项目(51578445)

EXPERIMENTAL STUDY ON THE SHEAR BEHAVIOR OF RC BEAMS REINFORCED BY HIGH DUCTILE CONCRETE

DENG Ming-ke1, LI Qi-qi1, MA Fu-dong1, HUANG Zheng2   

  1. 1. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China;
    2. Southwest Corporation of Zhongtian Construction Group Co., Ltd., Chengdu, Si'chuan 610041, China
  • Received:2018-06-30 Revised:2018-10-14 Online:2020-05-25 Published:2019-04-16

摘要: 为利用高延性混凝土(HDC)良好的拉伸和剪切变形能力,提高无腹筋钢筋混凝土梁的受剪性能,该文通过对9根HDC加固梁、1根高性能复合砂浆加固梁及3根未加固梁进行静力试验,研究剪跨比、加固层厚度和加固层是否配置箍筋对梁破坏形态、受剪承载力及变形能力的影响。结果表明:采用HDC面层对无腹筋梁进行抗剪加固,可以显著提高梁的抗剪承载力和变形能力;HDC面层可代替部分箍筋的抗剪作用,改善无腹筋梁的剪切破坏形态,并提高梁的剪压比限值;HDC加固层越厚,其受剪承载力和变形能力提高越明显,但加固层厚度较大时,需采用措施防止HDC面层间发生剥离破坏;HDC面层配置附加箍筋,可进一步提高试件的受剪承载力和耐损伤能力。基于试验结果,该文提出了HDC加固试件的受剪承载力计算公式,其计算值与试验结果吻合较好。

关键词: 高延性混凝土, 加固, 无腹筋梁, 受剪承载力, 变形能力

Abstract: To study the shear capacity of reinforced concrete (RC) beams without stirrups, nice RC beams with high ductile concrete (HDC) jacket, one RC beam with high-performance composite mortar jacket and three RC beams with no extra reinforcement were tested. The failure mode, shear capacity and deformability of all beams were studied for different shear span ratios and thickness of HDC jacket, and with or without stirrups in the HDC jacket. The test results showed that the HDC jacket can significantly improve the shear capacity and deformability of the beams, and can partially substitute stirrups by improving the shear failure form and increasing the threshold of the shear pressure ratio of the test beams. The thicker the HDC jacket, the more significant the improvement in the shear capacity and deformability. However, measures should be taken to prevent peeling damage when the HDC jacket is becoming too thick. Configuring stirrups in the HDC jacket can further improve the shear capacity and damage resistance ability of the strengthened beams. A formula was proposed to calculate the shear capacity of the beams, and the calculated values agree well with the test values.

Key words: high ductile concrete, strengthening, beams without stirrups, shear capacity, flexural capacity

中图分类号: 

  • TU375.1
[1] LI V C, LEUNG C K Y. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, ASCE, 1992, 188(11):2246-2264.
[2] LI V C. ECC-tailored composites through micromechanical modeling[C]//Fiber Reinforced Concrete:Present and the Future. Montreal:Canadian Society of Civil Engineering, 1998:64-97.
[3] LI V C, WANG S, WU C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Materials Journal, 2001, 98(6):483-492.
[4] LI V C. On engineered cementitious composites (ECC):a review of the material and its applications[J]. Journal of Advanced Concrete Technology, 2003, 1(3):215-230.
[5] Kabele P, Kanakubo T. Experimental and numerical investigation of shear behavior of PVA-ECC in structural elements[C]//International Workshop on High PERFORMANCE Fiber Reinforced Cementitious Composites, 2007:137-145.
[6] Fischer G, Li V C. Influence of matrix ductility on the tension-stiffening behavior of steel reinforced ECC[J]. ACI Structural Journal, 2002, 99(1):104-111.
[7] Fischer G, Li V C. Effect of matrix ductility on deformation behavior of steel reinforced ECC flexural members under reversed cyclic loading conditions[J]. ACI Struction Journal,2002, 99(6):781-790.
[8] Billington S L, Yoon J K. Cyclic response of precast bridge columns with ductile fiber-reinforced concret[J]. ASCE J. Bridge Engineering, 2004, 9(4):353-363.
[9] Maalej M, Zhang J, Quek S T, et al. High-velocity impact resistance of hybrid-fiber enginerred cementitious composites[C]//Proceedings of the Fifth International Conference on Fracture Mechanics of Concrete Structures (FRAMCOS-5). Vail, Colorado, USA:International Association of FRAMCOS, 2004:1051-1058.
[10] 梁兴文, 刘贞珍, 邢朋涛, 等. 纤维增强混凝土对角斜筋小跨高比连梁抗震性能试验研究及受剪承载力分析[J]. 土木工程学报, 2017, 50(2):27-35. Liang Xingwen, Liu Zhenzhen, Xing Pengtao, et al. Experimental study on seismic behavior and shear capacity of diagonally reinforced fiber-reinforced concrete coupling beams with small span-to-depth ratio[J]. China Civil Engineering Journal, 2017, 50(2):27-35. (in Chinese)
[11] 寇佳亮, 邓明科, 梁兴文. 延性纤维增强混凝土单轴拉伸性能试验研究[J]. 建筑结构, 2013, 43(1):59-64. Kou Jialiang, Deng Mingke, Liang Xingwen. Experimental study of uniaxial tensile properties of ductile fiber reinforced concrete[J]. Building Structure, 2013, 43(1):59-64. (in Chinese)
[12] 邓明科, 景武斌, 秦萌, 等. 高延性纤维混凝土抗压强度试验研究[J]. 建筑结构, 2016, 46(23):79-84. Deng Mingke, Jing Wubin, Qin Meng, et al. Experimental research on compressive strength of high ductility fiber reinforced concrete[J]. Building Structure, 2016, 46(23):79-84. (in Chinese)
[13] 邓明科, 孙宏哲, 梁兴文, 等. 延性纤维混凝土抗弯性能的试验研究[J]. 工业建筑, 2014, 44(5):85-90. Deng Mingke, Sun Hongzhe, Liang Xingwen, et al. Experiimental study of flexural behavior of ductile fiber reinforced concrete[J]. Industrial Construction, 2014, 44(5):85-90. (in Chinese)
[14] 邓明科, 代洁, 梁兴文, 等. 高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2016, 33(10):208-217. Deng Mingke, Dai Jie, Liang Xingwen, et al. Experimental study on the shear behavior of high ductile fiber reinforced concrete beams without stirrups[J]. Engineering Mechanics, 2016, 33(10):208-217. (in Chinese)
[15] 代洁, 邓明科, 陈佳莉. 基于材料延性的高延性混凝土无腹筋梁受剪性能试验研究[J].工程力学, 2018, 35(2):124-132. Dai Jie, Deng Mingke, Chen Jiali. Influence of matrix ductility on shear behavior of high ductile fiber reinforced concrete beams[J]. Engineering Mechanics, 2018, 35(2):124-132. (in Chinese)
[16] 邓明科, 卜新星, 潘姣姣, 等. 型钢高延性混凝土短柱抗震性能试验研究[J]. 工程力学, 2017, 34(1):163-170. Deng Mingke, Bu Xinxing, Pan Jiaojiao, et al. Experimental study on seismic behavior of steel reinforced high ductile concrete short column[J]. Engineering Mechanics, 2017, 34(1):163-170. (in Chinese)
[17] 邓明科, 樊鑫淼, 高晓军, 等. ECC面层加固受损砖砌体墙抗震性能试验研究[J]. 工程力学, 2015, 32(4):120-129. Deng Mingke, Fan Xinmiao, Gao Xiaojun, et al. Experimental investigation on seismic behavior of damaged brick masonry wall strengthened with ECC splint[J]. Engineering Mechanics, 2015, 32(4):120-129. (in Chinese)
[18] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2017, 38(6):86-94. (in Chinese) Deng Mingke, Zhang Yangxi, Hu Hongbo. Experimental study on seismic behavior of reinforced concrete column with high ductile concrete[J]. Journal of Building Structures, 2017, 38(6):86-94. (in Chinese)
[19] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture Industry Press, 2010. (in Chinese)
[20] GB 50367-2013, 混凝土结构加固设计规范[S]. 北京:中国建筑工业出版社, 2013. GB 50367-2013, Code for design of strengthening concrete structure[S]. Beijing:China Architecture Industry Press, 2013. (in Chinese)
[1] 陈再现, 杨续波. 组合材料加固砖砌体的有限元模拟方法[J]. 工程力学, 2020, 37(4): 96-104.
[2] 王斌, 史庆轩, 蔡文哲, 彭一功, 李涵. RC带翼缘剪力墙变形能力计算方法研究[J]. 工程力学, 2020, 37(3): 167-175,216.
[3] 邓明科, 董志芳, 樊鑫淼, 梁兴文. 高延性混凝土面层加固受弯无筋砌体墙抗震性能试验研究[J]. 工程力学, 2020, 37(3): 46-55.
[4] 邓明科, 李琦琦, 刘海勃, 景武斌. 高延性混凝土低矮剪力墙抗震性能试验研究及抗剪承载力计算[J]. 工程力学, 2020, 37(1): 63-72.
[5] 初明进, 刘继良, 侯建群, 任宝双. 带竖向接缝的空心模剪力墙受剪性能试验研究及承载力计算[J]. 工程力学, 2020, 37(1): 183-194.
[6] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[7] 苏庆田, 王思哲, 薛智波, 张春雷, 王倩, 陈亮. 卸载程度对钢桁梁桥主桁构件加固效果的影响[J]. 工程力学, 2019, 36(S1): 92-97,105.
[8] 刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(S1): 149-153.
[9] 万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸实验研究[J]. 工程力学, 2019, 36(S1): 293-297.
[10] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[11] 杨勇, 孙东德, 张超瑞, 薛亦聪, 陈阳, 于云龙. 钢管高强混凝土叠合构件受剪承载能力试验研究[J]. 工程力学, 2019, 36(8): 182-191.
[12] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[13] 杨勇, 薛亦聪, 于云龙. 预制装配型钢混凝土梁受剪承载力试验与计算方法研究[J]. 工程力学, 2019, 36(6): 92-100.
[14] 卜一之, 金通, 李俊, 张清华. 纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究[J]. 工程力学, 2019, 36(6): 211-218.
[15] 邓明科, 李彤, 樊鑫淼. 高延性混凝土加固砖柱轴压性能试验研究[J]. 工程力学, 2019, 36(5): 92-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 朱增青;陈建军;宋宗凤;林立广. 区间参数杆系结构非概率可靠性指标的改进仿射算法[J]. 工程力学, 2010, 27(2): 49 -053, .
[3] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[4] 金红杰;吴恒安;曹 刚;刘 合;王秀喜. 螺杆泵系统漏失和磨损机理研究[J]. 工程力学, 2010, 27(4): 179 -184 .
[5] 熊学玉;顾 炜. 基于改进LHS方法的预应力混凝土结构长期性能概率分析[J]. 工程力学, 2010, 27(4): 163 -168 .
[6] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[7] 张红梅;肖映雄. 三维弹性问题高次有限元离散线性系统的块对角逆预条件PCG法[J]. 工程力学, 2010, 27(7): 62 -066 .
[8] 吴帅兵;李典庆;周创兵;. 结构可靠度分析中变量相关时三种变换方法的比较[J]. 工程力学, 2011, 28(5): 41 -048, .
[9] 郑和晖;刘 钊;贺志启. 混凝土箱梁桥的横隔梁拉压杆模型及配筋设计[J]. 工程力学, 2011, 28(5): 97 -104 .
[10] 陈志煌;陈 力. 闭链双臂空间机器人动力学建模及载荷基于滑模补偿的力/位置混合控制[J]. 工程力学, 2011, 28(5): 226 -232 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日