工程力学 ›› 2020, Vol. 37 ›› Issue (5): 64-73.doi: 10.6052/j.issn.1000-4750.2019.04.0166

• 土木工程学科 • 上一篇    下一篇

箍筋约束混凝土圆柱轴压强度尺寸效应律

金浏1, 李平1, 杜修力1, 李冬1,2   

  1. 1. 北京工业大学城市减灾与防灾防护教育部重点实验室, 北京 100124;
    2. 清华大学土木工程系, 北京 100084
  • 收稿日期:2019-04-08 修回日期:2019-09-17 出版日期:2020-05-25 发布日期:2019-10-18
  • 通讯作者: 杜修力(1962-),男,四川人,教授,博士,博导,主要从事地震工程领域研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:金浏(1985-),男,江苏人,教授,博士,博导,主要从事混凝土及混凝土结构领域研究工作(E-mail:jinliu@bjut.edu.cn);李平(1991-),女,河北人,硕士,从事混凝土尺寸效应方面研究工作(E-mail:liping201710@163.com);李冬(1988-),男,北京人,助理研究员,博士,从事混凝土及混凝土结构领域研究(E-mail:winte_lee@126.com).
  • 基金资助:
    国家重点研发计划项目(2018YFC1504302);国家自然科学基金项目(51822801)

SIZE EFFECT LAW FOR NOMINAL STRENGTH OF STIRRUP-CONFINED CIRCULAR CONCRETE COLUMNS UNDER AXIAL COMPRESSION

JIN Liu1, LI Ping1, DU Xiu-li1, LI Dong1,2   

  1. 1. The key laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China;
    2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2019-04-08 Revised:2019-09-17 Online:2020-05-25 Published:2019-10-18

摘要: 钢筋混凝土构件的破坏模式与机制区别并远复杂于混凝土材料,采用混凝土材料层面的尺寸效应理论与公式来描述钢筋混凝土构件破坏的尺寸效应行为是值得商榷的。另外,混凝土材料尺寸效应理论公式难以反映钢筋混凝土结构构件中其他重要参数对尺寸效应的影响。以箍筋约束混凝土圆柱为研究对象来看:结合相关物理试验及数值模拟结果,凝练归纳出了影响其轴压破坏尺寸效应的主导参数——箍筋率;根据箍筋约束作用对柱轴压强度的影响机制与规律,在经典的Bažant材料层次尺寸效应律的基础上,建立了箍筋约束混凝土柱轴压强度的尺寸效应半理论-半经验公式。相关试验及模拟结果验证了该构件层次尺寸效应公式的准确性和合理性。

关键词: 约束混凝土, 圆柱, 箍筋约束, 轴压强度, 尺寸效应律

Abstract: The failure modes and mechanisms of reinforced concrete (RC) members are far different from those of the concrete material. It is therefore debatable to use the size effect theory and formula based on the concrete material to describe the size effect of RC members. Moreover, the size effect formula of the concrete material is difficult to describe the influence of other important structural parameters on the size effect of RC structural members. Taking circular concrete columns confined by stirrups for the research objects, combined with the physical test and numerical results, the main parameter of stirrup ratio that affects the size effect of nominal compressive strength was revealed. Furthermore, combined with the influence mechanism of the confining effect on the axial compressive strength of RC columns and based on the basic theory of the Size Effect Law (SEL) proposed by Bažant, a semi-theoretical and semi-empirical formula for the size effect of the uniaxial compressive strength of stirrup-confined RC columns was established. The experimental and numerical results in the present study as well as other experimental data verify the accuracy and rationality of thesemi-theoretical and semiempirical formula of the size effect on the RC member level.

Key words: reinforced concrete (RC), circular column, stirrup-confined, axial compressive strength, size effect law

中图分类号: 

  • TU528
[1] Tung N D, Tue N V. A fracture mechanics-based approach to modeling the confinement effect in reinforced concrete columns[J]. Construction and Building Materials, 2016, 102:893-903.
[2] Zhou X, Yan B, Liu J. Behavior of square tubed steel reinforced-concrete (SRC) columns under eccentric compression[J]. Thin-Walled Structures, 2015, 91:129-138.
[3] Dundar C, Erturkmen D, Tokgoz S. Studies on carbon fiber polymer confined slender plain and steel fiber reinforced concrete columns[J]. Engineering Structures, 2015, 102:31-39.
[4] Lu X, Hsu C T T. Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression[J]. Cement and Concrete Research, 2006, 36(9):1679-1685.
[5] Liu J, Sheikh S A. Glass Fiber-Reinforced PolymerReinforced Circular Columns under Simulated Seismic Loads[J]. ACI Structural Journal, 2015, 112(1):103-114.
[6] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of structural engineering, 1988, 114(8):1804-1826.
[7] Kent D C, Park R. Flexural members with confined concrete[J]. Journal of the Structural Division, 1971, 97(7):1969-1990.
[8] Sheikh S A, Uzumeri S M. Analytical model for concrete confinement in tied columns[J]. Journal of the Structural Division, 1982, 108(12):2703-2722.
[9] Legeron F, Paultre P. Uniaxial confinement model for normal-and high-strength concrete columns[J]. Journal of Structural Engineering, 2003, 129(2):241-252.
[10] 过镇海, 张秀琴, 张达成, 等.混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982, 3(1):1-12. Guo Zhenhai, Zhang Xiuqin, Zhang Dacheng, et al. Experimental investigation of the complete stress-strain curve of concrete[J]. Journal of Building Structures, 1982, 3(1):1-12. (in Chinese)
[11] 史庆轩, 王南, 王秋维, 等. 高强箍筋约束高强混凝土轴心受压本构关系研究[J]. 工程力学, 2013, 30(5):131-137. Shi Qingxuan, Wang Nan, Wang Qiuwei, et al. Uniaxial compressive stress-strain model for high-strength concrete confined with high-strength lateral ties[J]. Engineering Mechanics, 2013, 30(5):131-137.(in Chinese)
[12] Němeček J, Bittnar Z. Experimental investigation and numerical simulation of post-peak behavior and size effect of reinforced concrete columns[J]. Materials and Structures, 2004, 37(3):161-169.
[13] Şener S, Barr B I G, Abusiaf H F. Size effect in axially loaded reinforced concrete columns[J]. Journal of Structural Engineering, 2004, 130(4):662-670.
[14] 李冬, 金浏, 杜修力. 轴压加载下高强钢筋混凝土柱尺寸效应试验研究[J]. 工程力学, 2017, 34(4):49-71. Li Dong, Jin Liu, Du Xiuli. Experimental study on the size effect of high-strength RC columns under axial compression[J]. Engineering Mechanics, 2017, 34(4):49-71. (in Chinese)
[15] Kim J K, Yi S T, Park C K, et al. Size effect on compressive strength of plain and spirally reinforced concrete cylinders[J]. ACI Structural Journal, 1999, 96(10):88-94.
[16] GB50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture and Building Press, 2010. (in Chinese)
[17] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(Ⅰ):材料层次[J]. 土木工程学报, 2017, 50(9):28-45. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (I):concrete materials[J]. China Civil Engineering Journal, 2017, 50(9):28-45. (in Chinese)
[18] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(Ⅱ):构件层次[J]. 土木工程学报, 2017, 50(11):24-44. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (II):RC members[J]. China Civil Engineering Journal, 2017, 50(11):24-44. (in Chinese)
[19] Bažant Z P. Size effect in blunt fracture:concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4):518-535.
[20] Carpinteri A, Ferro G. Size effects on tensile fracture properties:A unified explanation based on disorder and fractality of concrete microstructure[J]. Materials and Structures, 1994, 27(10):563-571.
[21] Weibull W. A statistical distribution function of wide applicability[J]. Journal of applied mechanics, 1951, 18(3):293-297.
[22] Syroka-Korol E, Tejchman J. Experimental investigations of size effect in reinforced concrete beams failing by shear[J]. Engineering Structures, 2014, 58(7):63-78.
[23] Barbhuiya S, Choudhury AM. A study on the size effect of RC beam-column connections under cyclic loading[J]. Engineering Structures, 2015, 95:1-7.
[24] 金浏, 杜敏, 杜修力, 等. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5):93-101. Jin Liu, Du Min, Du Xiuli, et al. Size effect on the failure of stirrp-confined reinforced concrete columns under axial compression[J]. Engineering Mechanics, 2018, 35(5):93-101. (in Chinese)
[25] Du M, Jin L, Du X, et al. Size effect tests of stocky reinforced concrete columns confined by stirrups[J]. Structural Concrete, 2017, 18(3):454-465.
[26] Rios R D, Riera J D. Size effects in the analysis of reinforced concrete structures[J]. Engineering Structures, 2004, 26(8):1115-1125.
[27] Jin L, Li D, Du X, et al. Experimental and Numerical Study on Size Effect in Eccentrically Loaded Stocky RC Columns[J]. ASCE Journal of Structural Engineering, 2017, 17(2):4016170.
[28] Du X, Jin L, Ma G. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4):5-17.
[29] Eid R, Roy N, Paultre P. Normal-and high-strength concrete circular elements wrapped with FRP composites[J]. Journal of Composites for Construction, 2009, 13(2):113-124.
[30] Sheikh S A, Toklucu M T. Reinforced concrete columns confined by circular spirals and hoops[J]. ACI Structural Journal, 1993, 90(5):542-542.
[31] Mander J B, Priestley M J N, Park R. Observed stress-strain behavior of confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1827-1849.
[1] 金浏, 王涛, 杜修力, 夏海. 钢筋混凝土悬臂梁剪切破坏及尺寸效应律研究[J]. 工程力学, 2020, 37(1): 53-62.
[2] 周佳豪, 马文勇, 黄伯城. 临界雷诺数区光滑圆柱振动与气动力研究[J]. 工程力学, 2019, 36(S1): 306-310.
[3] 侯宇, 黄振贵, 陈志华, 罗驭川. 空心圆柱低速垂直入水试验研究[J]. 工程力学, 2019, 36(9): 237-246.
[4] 金浏, 余文轩, 杜修力, 张帅, 李冬. 低应变率下混凝土动态拉伸破坏尺寸效应细观模拟[J]. 工程力学, 2019, 36(8): 59-69,78.
[5] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[6] 熊能, 顾冬生. 钢筋粘结滑移弯矩-转角计算模型[J]. 工程力学, 2019, 36(12): 98-105.
[7] 杨光昌, 白冰. 不同升温-降温路径下中空圆柱饱和粉质黏土的热固结[J]. 工程力学, 2018, 35(9): 126-134.
[8] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9): 135-144.
[9] 杜晓庆, 王玉梁, 赵燕, 孙雅慧, 代钦. 高雷诺数下错列双圆柱气动干扰的机理研究[J]. 工程力学, 2018, 35(9): 223-231.
[10] 王丕光, 赵密, 杜修力. 考虑水体压缩性的椭圆柱体地震动水压力分析[J]. 工程力学, 2018, 35(7): 55-61.
[11] 赵宪忠, 温福平. 钢骨约束混凝土的约束机制及其应力-应变模型建立[J]. 工程力学, 2018, 35(5): 36-46.
[12] 金浏, 杜敏, 杜修力, 李振宝. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5): 93-101.
[13] 杨永宝, 危银涛. 弹性基础上正交各向异性圆柱壳的自由振动[J]. 工程力学, 2018, 35(4): 24-32.
[14] 宋国荣, 刘明坤, 吕炎, 刘宏业, 吴斌, 何存富. 正交各向异性空心圆柱体中的纵向导波[J]. 工程力学, 2018, 35(3): 218-226.
[15] 徐万海, 栾英森, 余杨, 覃雯琪. 大倾角附螺旋列板倾斜圆柱涡激振动抑制分析[J]. 工程力学, 2018, 35(1): 236-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[2] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[3] 何 政;金建平;宋继广. 带载状态下CFRP约束混凝土圆柱膨胀比试验研究[J]. 工程力学, 2009, 26(9): 145 -151, .
[4] 熊铁华;梁枢果;邹良浩. 风荷载下输电铁塔的失效模式及其极限荷载[J]. 工程力学, 2009, 26(12): 100 -104, .
[5] 王 丽;鲁晓兵;时忠民. 钙质砂地基中桶形基础水平动载响应实验研究[J]. 工程力学, 2010, 27(2): 193 -203 .
[6] 白永强;汪 彤;吕良海;孙 亮;帅 健;陈 钢. 拉弯联合载荷下弹塑性J积分估算方法研究[J]. 工程力学, 2010, 27(03): 6 -009, .
[7] 刘 纲;邵毅敏;黄宗明;周晓君. 长期监测中结构温度效应分离的一种新方法[J]. 工程力学, 2010, 27(03): 55 -061, .
[8] 张 衡;魏德敏. 考虑温度影响的混凝土微观断裂模型[J]. 工程力学, 2010, 27(10): 14 -020 .
[9] 张晓晶;杨 慧;汪 海. 细观结构对缝合复合材料力学性能的影响分析[J]. 工程力学, 2010, 27(10): 34 -041 .
[10] 张秀芳;徐世烺. 不同软化曲线形状对裂缝扩展阻力GR曲线的影响[J]. 工程力学, 2009, 26(2): 5 -009 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日