工程力学 ›› 2020, Vol. 37 ›› Issue (5): 94-103,119.doi: 10.6052/j.issn.1000-4750.2019.06.0295

• 土木工程学科 • 上一篇    下一篇

密集横隔板UHPC箱梁锚固区局部承压性能研究

冯峥1, 李传习1, 潘仁胜1, 刘科强2, 聂洁1   

  1. 1. 长沙理工大学桥梁工程安全控制教育部重点实验室, 湖南, 长沙 410004;
    2. 佛山市路桥建设有限公司, 广东, 佛山 528303
  • 收稿日期:2019-06-03 修回日期:2020-02-11 出版日期:2020-05-25 发布日期:2020-02-17
  • 通讯作者: 李传习(1963-),男,湖南衡阳人,教授,博士,主要从事桥梁结构理论与新材料、新技术研究(E-mail:lichuanxi2@163.com). E-mail:lichuanxi2@163.com
  • 作者简介:冯峥(1992-),男,湖南湘潭人,博士生,主要从事UHPC桥梁结构研究(E-mail:fzllufr@163.com);潘仁胜(1988-),男,湖南娄底人,讲师,博士,主要从事UHPC桥梁结构研究(E-mail:panrshc@hnu.edu.cn);刘科强(1979-),男,湖南益阳人,高工,学士,主要从事桥梁工程管理与维护研究(E-mail:fsliukq@163.com);聂洁(1990-),男,山西长治人,博士生,主要从事UHPC材料力学性能研究(E-mail:niejie23@126.com).
  • 基金资助:
    国家自然科学基金项目(51778069,51808055);桥梁工程领域省部级重点实验室开放基金项目(18KE04);湖南省研究生科研创新项目(CX2018B522)

STUDY ON LOCAL COMPRESSIVE PERFORMANCE FOR ANCHORAGE ZONE OF UHPC BOX-GIRDER WITH DENSELY DISTRIBUTED DIAPHRAGMS

FENG Zheng1, LI Chuan-xi1, PAN Ren-sheng1, LIU Ke-qiang2, NIE Jie1   

  1. 1. Key Laboratory of Safety Control for Bridge Engineering of the Ministry of Education, Changsha University of Science & Technology, Changsha, Hu'nan 410004, China;
    2. Foshan Road & Bridge Construction Co., LTD, Foshan, Guangdong 528303, China
  • Received:2019-06-03 Revised:2020-02-11 Online:2020-05-25 Published:2020-02-17

摘要: 为获得密集横隔板UHPC箱梁"隔板连通式齿块"的局部承压受力特征及承载能力,该文以某拟建UHPC箱梁桥为工程背景,通过大吨位张拉试验及非线性有限元模型对UHPC箱梁锚固区进行了受力分析,得到了以下结论:UHPC锚固区局压开裂为UHPC的拉应力控制;"隔板连通式齿块"中"局部弯曲效应"和"径向力效应"均不显著,但"锚下劈裂效应"和"隔板弯曲效应"较为明显且为导致锚固区承载失效的重要因素;背景工程中尺寸小巧的"隔板连通式齿块"张拉到4700 kN时无开裂风险,采用25根钢绞线锚固同样能满足承载能力要求,可在实际工程中广泛采纳;UHPC锚固区的拉应变值即便进入到了拉伸应变硬化阶段锚固区仍能正常使用,为建造经济化在设计中可适当利用UHPC的拉伸应变硬化特征。此外,UHPC锚固区局压承载力基于不同承载力公式所得的计算结果差距较大(最大差值达到了40.9%),其中基于Kim公式、《活性粉末混凝土结构技术规程》以及《超高性能混凝土结构设计技术规程》(征求意见稿)中局压承载力计算公式所得结果与FEA结果较为接近。

关键词: 桥梁工程, UHPC薄壁箱梁, 锚固区, 局部作用效应, 足尺试验, 局压承载能力

Abstract: In order to obtain the mechanical behavior and local bearing capacity of the diaphragm-anchor block integrated anchorage system (DABIAS) in a UHPC continuous box-girder with densely distributed diaphragms, the mechanical behavior analysis of the UHPC box-girder anchorage zone was carried out by a large-tonnage tension test and an non-linear finite element method, taking a newly built UHPC box-girder bridge as the engineering background. The conclusions were as follows:the local compressive cracking in a UHPC anchorage zone is controlled by the tensile stress of UHPC. The local bending effect and radial-force effect of the DABIAS are insignificant, but the bursting-force effect and diaphragm-bending effect are prominent, and it is amajor factor leading to the bearing failure of anchorage zone. When the prestressed load was stretched to 4700 kN, there is no risk of cracking for the small-sized anchor block of the DABIAS in the engineering background. Similarly, the prestressing tendon with twenty-five steel strands can meet the bearing capacity of the anchor block well. It can be widely adopted in pertinent engineering. The UHPC anchorage zone can be used in normal even when the tensile strains of UHPC enter the strain-hardening domain. Thus, in order to reduce the project cast, the strain-hardening characteristic of UHPC should be utilized in design. In addition, the calculation results of the local compressive bearing capacity of UHPC anchorage zone based on different formulas are quite different (the maximum difference reaches 40.9%), among which the results based on Kim's formula, "Technical Specification for Reactive Powder Concrete Structures" and "Technical Standards for Highway Ultra-high Performance Concrete (UHPC) Bridge (Exposure Draft)" are close to those of FEA.

Key words: bridge engineering, UHPC thin-walled box-girder, anchorage zone, local action effect, full-scale experiment, local compressive bearing capacity

中图分类号: 

  • U448.213
[1] 赵军卫, 郑文忠. 预应力混凝土局压承载力计算及端部间接钢筋的配置问题[J]. 工业建筑, 2007, 37(11):47-52. Zhao Junwei, Zhen Wenzhong. Some problems on calculation of local compression load bearing capacity and placing of indirect reinforcement in end zone of prestressed concrete[J]. Industrial Construction, 2007, 37(11):47-52. (in Chinese)
[2] 蔡绍怀. 混凝土及配筋混凝土的局部承压强度[J].土木工程学报, 1963, 9(6):1-10. Cai Shaohuai. Local compressive strength of concrete and reinforced concrete[J]. China Civil Engineering Journal, 1963, 9(6):1-10. (in Chinese)
[3] Richart F, Brandtzaeg A, Brown R. A study of the failure of concrete under combined compressive stresses[M]. Bulletin:University of Illinois Engineering Experiment Station, 1928.
[4] 曹声远, 杨熙坤. 混凝土局部承压的工作机理及强度理论[J]. 哈尔滨建筑工程学院学报, 1982(3):44-53. Cao Shengyuan, Yang Xikun. Working mechanism and strength theory of concrete under local pressure[J]. Journal of Harbin Civil Engineering Institute, 1982(3):44-53. (in Chinese)
[5] 刘永颐, 关建光, 王传志. 混凝土局部承压强度及破坏机理[J]. 土木工程学报, 1985, 18(2):53-65. Liu Yongyi, Guan Jianguang, Wang Chuanzhi. Bearing strength of concrete and its failure mechanism[J]. China Civil Engineering Journal, 1985, 18(2):53-65. (in Chinese)
[6] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2011. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture and Building Press, 2011. (in Chinese)
[7] CECS 38-2004, 纤维混凝土结构技术规程[S]. 北京:中国计划出版社, 2004. CECS 38-2004, Technical specification for fiber reinforced concrete structures[S]. Beijing:China Planning Press, 2004. (in Chinese)
[8] 郑文忠, 赵军卫, 张博一. 活性粉末混凝土局压承载力试验与分析[J]. 南京理工大学学报(自然科学版), 2008, 32(3):381-386. Zhen Wenzhong, Zhao Junwei, Zhang Boyi. Experiment and analysis of local compression bearing capacity of reactive power concrete[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2008, 32(3):381-386. (in Chinese)
[9] Zhou Wei, Hu Haibo, Zheng Wenzhong. Bearing capacity of reactive powder concrete reinforced by steel fibers[J]. Construction and Building Materials, 2013(48) 1179-1186.
[10] 刘钊, 吕志涛, 惠卓, 等. 拉压杆模型在混凝土梁桥中的应用与研究进展[J]. 中国工程科学, 2008, 10(10):14-21. Liu Zhao, Lü Zhitao, Hui Zhuo, et al. Review of application and research on stru-and-tie models for concrete bridges[J]. Strategic Study of CAE, 2008, 10(10):14-21. (in Chinese)
[11] 林波, 刘钊, 吕志涛. 体外预应力独立矩形齿块锚固区的拉压杆模型及配筋设计[J]. 工程力学, 2011, 28(12):59-64. Lin Bo, Liu Zhao, Lü Zhitao. Strut-and-tie model and reinforcement design method for isolated rectangular anchor block for external tendons[J]. Engineering Mechanics, 2011, 28(12):59-64. (in Chinese)
[12] 林波, 刘钊. 体外预应力角隅矩形齿块锚固区的拉压杆模型及配筋设计[J]. 工程力学, 2012, 29(4):155-160, 167. Linbo, Liu Zhao. Strut-and-tie model and reinforcement design method for corner rectangular anchor block for external tendons[J]. Engineering Mechanics,2012, 29(4):155-160, 167. (in Chinese)
[13] 林波, 刘钊. 预应力锚固区拉压杆模型及配筋设计[J]. 公路交通科技, 2011, 28(6):91-96. Lin bo, Liu Zhao. Strut-and-tie models and reinforcement design for prestressed anchorage plates[J]. Journal of Highway and Transportation Research and Development, 2011, 28(6):91-96. (in Chinese)
[14] JTG 3362-2018. 公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京:中国交通出版社股份有限公司, 2018. JTG 3362-2018. Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts[S]. Beijing:China Communications Press Co., Ltd, 2018. (in Chinese)
[15] 邵旭东, 张良, 张松涛, 等. 新型UHPC连续箱梁桥的体外预应力锚固构造形式研究[J]. 湖南大学学报(自然科学版), 2016, 43(3):1-7. Shao Xudong, Zhang Liang, Zhang Songtao, et al. Study on structural forms of external prestressing anchorage for a novel continuous UHPC box-girder bridge[J]. Journal of Hunan University (Natural Sciences), 2016, 43(3):1-7. (in Chinese)
[16] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8):50-58 Zhang Zhe, Shao Xudong, Li Wenguang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8):50-58. (in Chinese)
[17] Aaleti S, Petersen B, Sritharan S. Design guide for precast UHPC Waffle deck panel system including connections[R]. Washington DC:Federal Highway Administration, 2013.
[18] NFP 18-710, National addition to Eurocode 2-Specific rules for ultra-high performance fibre-reinforced concrete[S]. Francis de Pressensé:Association Française de Normalisation (AFNOR-Rrench Standard Institute), 2016.
[19] 李传习, 聂洁, 潘仁胜, 等. 水胶比对掺粉煤灰超高性能混凝土施工与力学性能影响[J]. 硅酸盐通报, 2019, 38(1):14-21. Li Chuanxi, Nie Jie, Pan Rensheng, et al. Effect of water-to-binder ratio on the construction and mechanical properties of ultra-high performance concrete mixed with fly ash[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1):14-21. (in Chinese)
[20] Kim J R, Kwak H G, Kim B S, et al. Finite element analyses and design of post-tensioned anchorage zone in ultra high performance concrete beams[J]. Advance in Structural Engineering, 2018:1-14.
[21] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[22] 郭晓宇, 亢景付, 朱劲松. 超高性能混凝土单轴受压本构关系[J]. 东南大学学报(自然科学版), 2017, 47(2):369-376. Guo Xiaoyu, Kang Jingfu, Zhu Jinsong. Constitutive relationship of ultrahigh performance concrete under uni-axial compression[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(2):369-376. (in Chinese)
[23] 马亚峰. 活性粉末混凝土(RPC200)单轴受压本构关系研究[D]. 北京:北京交通大学, 2006. Ma Yafeng. Study on constitutive relationship of 200 MPa reactive powder concrete under uni-axial compression[D]. Beijing:Beijing Jiaotong University, 2006. (in Chinese)
[24] AFGC-Setra, Ultra high performance fibre reinforced concretes[S]. Paris:AFGC and SETRA Working Group, 2013.
[25] 李立峰. 范昕, 石雄伟, 等. 大比例预应力UHPC-T形梁抗弯性能试验研究[J]. 土木工程学报, 2018, 51(5):84-94. Li Lifeng, Fan Xin, Shi Xiongwei, et al. Experimental study of flexural behaviour of large-scale prestressed UHPC T-shaped beam[J]. China Civil Engineering Journal, 2018, 51(5):84-94. (in Chinese)
[26] 周威, 胡海波. 预留孔道活性粉末混凝土局压性能与承载力分析[J]. 工程力学, 2014, 31(7):119-128. Zhou Wei, Hu Haibo. Analysis on bearing capacity and behavior of reactive powder concrete with empty concentric duct under local pressure[J]. Engineering Mechanics, 2014, 31(7):119-127. (in Chinese)
[27] DBJ 43/T 325-2017, 活性粉末混凝土结构设计技术规程[S]. 湖南:湖南省住房与城乡建设厅, 2017. DBJ 43/T 325-2017, Technical specification for reactive powder concrete structures[S]. Hu'nan:Department of Housing and Urban Rural Development of Hunan Province, 2017. (in Chinese)
[28] 胡海波. 后张预应力活性粉末混凝土局压承载力试验研究[D]. 哈尔滨:哈尔滨工业大学, 2012. Hu Haibo. Experimental investigation on anchorage zone capacity of post-tensioned reactive power concrete[D]. Harbin:Harbin Institute of Technology, 2012. (in Chinese)
[29] 超高性能混凝土结构设计技术规程[S]. 北京:中国混凝土与水泥制品协会(征求意见稿), 2018. Technical specification for ultra-high performance concrete structures[S]. Beijing:China Concrete & Cement-based Products Association (Exposure Draft), 2018. (in Chinese)
[30] 公路超高性能混凝土(UHPC)桥梁技术规程[S]. 北京:中国工程建设标准化协会公路分会(征求意见稿), 2019. Technical standards for highway ultra-high-performance concrete (UHPC) bridge[S]. Beijing:China Committee of Highway Engineering Standardization (Exposure Draft), 2019. (in Chinese)
[31] AASHTO LRFD bridge design specification (8th edition)[S]. Washington, DC:American Association of State Highway and Transportation Officials, 2017.
[1] 陈龙, 黄天立. 基于贝叶斯更新和逆高斯过程的在役钢筋混凝土桥梁构件可靠度动态预测方法[J]. 工程力学, 2020, 37(4): 186-195.
[2] 李游, 李传习, 陈卓异, 贺君, 邓扬. 基于监测数据的钢箱梁U肋细节疲劳可靠性分析[J]. 工程力学, 2020, 37(2): 111-123.
[3] 林阳, 封周权, 华旭刚, 陈政清. 基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法[J]. 工程力学, 2020, 37(2): 192-200.
[4] 王春生, 王世超, 王茜, 沈建成, 段兰. 危旧预应力混凝土箱梁承载性能足尺试验[J]. 工程力学, 2019, 36(8): 171-181.
[5] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[6] 朱志辉, 张磊, 龚威, 罗思慧, 姚京川, 余志武. 基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法[J]. 工程力学, 2019, 36(4): 196-205.
[7] 黄福云, 龙腾飞, 杨芳芳, 董锐. 钢管混凝土单圆管拱模型重力失真影响振动台试验研究[J]. 工程力学, 2019, 36(12): 52-61.
[8] 秦超, 颜王吉, 孙倩, 任伟新. 基于贝叶斯功率谱变量分离方法的实桥模态参数识别[J]. 工程力学, 2019, 36(10): 212-222.
[9] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[10] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[11] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[12] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
[13] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
[14] 宋帅, 钱永久, 钱聪. 桥梁地震需求中随机参数的重要性分析方法研究[J]. 工程力学, 2018, 35(3): 106-114.
[15] 叶新一, 王草, 李全旺. 桥梁结构时变可靠度计算的新方法[J]. 工程力学, 2018, 35(11): 86-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[2] 田力;高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究[J]. 工程力学, 2011, 28(11): 114 -123 .
[3] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[4] 李皓玉;杨绍普;齐月芹;徐步青. 移动随机荷载下沥青路面的动力学特性和参数影响分析[J]. 工程力学, 2011, 28(11): 159 -165 .
[5] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[6] 王伟;蔡永梅;谢禹钧. 椭圆形截面管环向裂纹应力强度因子分析方法[J]. 工程力学, 2011, 28(11): 197 -201 .
[7] 王进廷;张楚汉;金峰. 有阻尼动力方程显式积分方法的精度研究[J]. 工程力学, 2006, 23(3): 1 -5 .
[8] 熊铁华;常晓林. 响应面法在结构体系可靠度分析中的应用[J]. 工程力学, 2006, 23(4): 58 -61 .
[9] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
[10] 纵智育;辛克贵;王珊. 张力膜结构初始形态分析的曲面四边形单元[J]. 工程力学, 2006, 23(3): 32 -36,2 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日