工程力学 ›› 2020, Vol. 37 ›› Issue (5): 112-119.doi: 10.6052/j.issn.1000-4750.2019.06.0333

• 土木工程学科 • 上一篇    下一篇

型钢混凝土框架柱等效塑性铰长度研究

王斌, 孙勇峰, 霍光, 杨倩   

  1. 西安工业大学建筑工程学院, 陕西, 西安 710021
  • 收稿日期:2019-06-24 修回日期:2019-09-25 出版日期:2020-05-25 发布日期:2019-10-18
  • 通讯作者: 王斌(1983-),男,陕西渭南人,副教授,博士,硕导,主要从事结构工程和工程抗震研究(E-mail:wangbin2346@xatu.edu.cn). E-mail:wangbin2346@xatu.edu.cn
  • 作者简介:孙勇峰(1991-),男,陕西铜川人,硕士生,主要从事结构工程研究(E-mail:sunyongfeng@st.xatu.edu.cn);霍光(1991-),男,陕西铜川人,硕士生,主要从事结构工程研究(E-mail:huoguang@st.xatu.edu.cn);杨倩(1995-),女,陕西渭南人,硕士生,主要从事结构工程研究(E-mail:18149076352@163.com).
  • 基金资助:
    国家科技支撑计划项目(2013BAJ08B03);国家自然科学基金项目(51978078,51678475);陕西省教育厅科研计划项目(18JK0382);陕西省科技厅科研计划项目(2018JQ5158)

STUDY ON EQUIVALENT PLASTIC HINGE LENGTH OF SRC FRAME COLUMNS

WANG Bin, SUN Yong-feng, HUO Guang, YANG Qian   

  1. School of Civil and Architecture Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
  • Received:2019-06-24 Revised:2019-09-25 Online:2020-05-25 Published:2019-10-18

摘要: 为了对地震作用下型钢混凝土框架柱的等效塑性铰长度做出较为准确的定义,根据课题组前期试验结果,对水平地震作用下型钢混凝土框架柱的破坏现象和机理进行了深入分析,建立了地震作用下型钢混凝土柱的柱顶极限位移模型,基于考虑纵筋屈服后型钢和核心区混凝土的弯曲效应以及型钢翼缘的应变渗透效应,通过理论分析与推导得到了柱顶极限位移模型中各分量对应塑性转角计算方法,最终采用曲率积分的原理建立了适用于型钢混凝土框架柱等效塑性铰长度的计算表达式。将解析方法得到计算结果与试验结果进行对比,结果表明:该文所提出的等效塑性铰长度计算公式与型钢混凝土框架柱在水平地震荷载作用下的试验结果吻合较好,该研究结果可为型钢混凝土组合结构构件基于性能的抗震设计和弹塑性分析提供一定的理论支撑。

关键词: 型钢混凝土框架柱, 等效塑性铰长度, 弯曲效应, 应变渗透效应, 曲率积分

Abstract: In order to define the equivalent plastic hinge length of steel reinforced concrete (SRC) frame columns under earthquake, according to the test results of SRC frame columns under low cyclic loading, the top ultimate displacement model of SRC frame columns was obtained through analyzing the failure phenomena and mechanism of SRC columns under earthquake. The plastic rotation angles of each component were established by considering the bending effect in the core area and the strain permeability effect of steel flange. Finally, the formula for calculating the equivalent plastic hinge length of SRC frame columns was obtained by adopting the principle of curvature integral. Meanwhile, the calculated results of the analytical method were compared with experimental results. The results obtained by the calculation formula for the equivalent plastic hinge length proposed agree well with the test results. The research results can provide some theory support for performance-based seismic design and elastic-plastic analysis of SRC structure components.

Key words: SRC frame columns, equivalent plastic hinge length, bending effect, strain permeability effect, curvature integral

中图分类号: 

  • TU398.2
[1] 陈学伟, 林哲. 结构弹塑性分析程序OpenSEES原理与实例[M]. 北京:中国建筑工业出版社, 2014. Chen Xuewei, Lin Zhe. Principle and example of OpenSEES program for elastoplastic analysis of structures[M]. Beijing:China Architecture & Building Press, 2014. (in Chinese)
[2] Priestley M J N, Park R. Strength and ductility of concrete bridge columns under seismic loading[J]. ACI Structural Journal, 1987, 84(1):61-76.
[3] Paulay T, Priestley M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York:John Wiley & Sons, 1992.
[4] Sakai K, Sheikh S A. What do we know about confinement in reinforced concrete columns (a critical review of previous work and code provisions)[J]. ACI Structural Journal, 1989, 86(2):192-207.
[5] Bae S, Bayrak O. Plastic hinge length of reinforced concrete columns[J]. ACI Structural Journal, 2008, 105(3):290-300.
[6] 艾庆华, 王东升, 李宏男, 等. 基于塑性铰模型的钢筋混凝土桥墩地震损伤评价[J]. 工程力学, 2009, 26(4):158-166. Ai Qinghua, Wang Dongsheng, Li Hongnan, et al. Seismic damage assessment of reinforced concrete piers based on plastic hinge model[J]. Engineering Mechanics, 2009, 26(4):158-166. (in Chinese)
[7] 赫中营, 叶爱君. 力法非线性梁柱单元的合理单元长度划分[J]. 工程力学, 2014, 31(7):178-184. He Zhongying, Ye Aijun. Rational element length division of force-based non-linear beam-column elements[J]. Engineering Mechanics, 2014, 31(7):178-184. (in Chinese)
[8] 杨坤, 史庆轩, 赵均海. 高强箍筋高强混凝土柱的塑性铰长度[J]. 工程力学, 2013, 30(2):254-259. Yang Kun, Shi Qingxuan, Zhao Junhai. Plastic hinge length of high-strength concrete columns with high-strength stirrups[J]. Engineering Mechanics, 2013, 30(2):254-259. (in Chinese)
[9] 王斌. 型钢高强高性能混凝土构件及其框架结构的地震损伤研究[D]. 西安:西安建筑科技大学, 2010. Wang Bin. Research on seismic damage of steel reinforced high strength and high performance concrete members and frame structures[D]. Xi'an:Xi'an University of Architecture and Technology, 2010. (in Chinese)
[10] 薛建阳, 赵鸿铁. 型钢混凝土粘结滑移理论及其工程应用[M]. 北京:科学出版社, 2007. Xue Jianyang, Zhao Hongtie. Bond-slip theory of steel reinforced concrete and its engineering application[M]. Beijing:Science Press, 2007. (in Chinese)
[11] 郑山锁, 杨勇. 型钢混凝土粘结滑移性能研究[J]. 土木工程学报, 2002, 35(4):47-51. Zheng Shansuo, Yang Yong. Study on bond-slip behavior of steel reinforced concrete[J]. China Civil Engineering Journal, 2002, 35(4):47-51. (in Chinese)
[12] Tastani S P, Pantazopoulou S J. Yield penetration in seismically loaded anchorages:Effects on member deformation capacity[J]. Earthquakes and Structures, 2013, 5(5):527-552.
[13] Tastani S P, Pantazopoulou S J. Reinforcement and concrete bond:State determination along the development length[J]. Journal of Structure Engineering, 2012, 139(9):1567-1581.
[14] Megalooikonomou K G, Tastani S P. Effect of yield penetration on column plastic hinge length[J]. Engineering Structures, 2018, 156:161-174.
[15] Sezen H, Setzler E J. Reinforcement slip in reinforced concrete columns[J]. ACI Structural Journal, 2008, 105(3):280-289
[16] 孙玉品. 型钢混凝土柱弯矩-曲率曲线有限元分析[D]. 西安:西安建筑科技大学, 2008. Sun Yupin. Finite element analysis of moment-curvature curve of steel reinforced concrete columns[D]. Xi'an:Xi'an University of Architecture and Technology, 2008. (in Chinese)
[17] 郑山锁, 张亮, 李磊, 等. 型钢高强混凝土框架柱抗震性能试验研究[J]. 建筑结构学报, 2012, 33(5):124-132. Zheng Shansuo, Zhang Liang, Li Lei, et al. Experimental study on seismic behavior of steel reinforced high strength concrete frame columns[J]. Journal of Building Structures, 2012, 33(5):124-132. (in Chinese)
[18] 彭春华. 型钢高强高性能混凝土柱轴压比限值试验研究与理论分析[D]. 西安:西安建筑科技大学, 2008. Peng Chunhua. Experimental study and theoretical analysis on the limit value of axial compression ratio of high strength and high performance steel reinforced concrete columns[D]. Xi'an:Xi'an University of Architecture and Technology, 2008. (in Chinese)
[1] 陈宇, 李忠献, 李宁. 钢筋混凝土柱地震破坏分析的多尺度建模方法[J]. 工程力学, 2016, 33(6): 46-53.
[2] 王 斌;郑山锁;李 磊. 基于损伤的型钢混凝土构件数值分析[J]. 工程力学, 2011, 28(5): 124-128,.
[3] 陈小英;李唐宁;陈明政;黄 音. 波形齿锚具锚固CFRP片材的力学性能试验研究及锚具体系设计[J]. 工程力学, 2009, 26(6): 184-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[2] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[3] 何 政;金建平;宋继广. 带载状态下CFRP约束混凝土圆柱膨胀比试验研究[J]. 工程力学, 2009, 26(9): 145 -151, .
[4] 熊铁华;梁枢果;邹良浩. 风荷载下输电铁塔的失效模式及其极限荷载[J]. 工程力学, 2009, 26(12): 100 -104, .
[5] 王 丽;鲁晓兵;时忠民. 钙质砂地基中桶形基础水平动载响应实验研究[J]. 工程力学, 2010, 27(2): 193 -203 .
[6] 白永强;汪 彤;吕良海;孙 亮;帅 健;陈 钢. 拉弯联合载荷下弹塑性J积分估算方法研究[J]. 工程力学, 2010, 27(03): 6 -009, .
[7] 刘 纲;邵毅敏;黄宗明;周晓君. 长期监测中结构温度效应分离的一种新方法[J]. 工程力学, 2010, 27(03): 55 -061, .
[8] 张 衡;魏德敏. 考虑温度影响的混凝土微观断裂模型[J]. 工程力学, 2010, 27(10): 14 -020 .
[9] 张晓晶;杨 慧;汪 海. 细观结构对缝合复合材料力学性能的影响分析[J]. 工程力学, 2010, 27(10): 34 -041 .
[10] 张秀芳;徐世烺. 不同软化曲线形状对裂缝扩展阻力GR曲线的影响[J]. 工程力学, 2009, 26(2): 5 -009 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日