工程力学 ›› 2020, Vol. 37 ›› Issue (5): 15-25.doi: 10.6052/j.issn.1000-4750.2019.06.0340

• 综述 • 上一篇    下一篇

大气边界层大涡模拟入口湍流生成方法综述

周桐1,2, 杨庆山2,3, 闫渤文3, Pham Van Phuc4, 王京学1,2   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 结构风工程与城市风环境北京市重点实验室, 北京 100044;
    3. 重庆大学土木工程学院, 重庆 400044;
    4. 清水建设技术研究所, 日本, 东京 135-8530
  • 收稿日期:2019-06-28 修回日期:2019-09-23 出版日期:2020-05-25 发布日期:2019-10-18
  • 通讯作者: 周桐(1995-),男,湖南人,硕士生,主要从事结构风工程研究(E-mail:tongzhou@bjtu.edu.cn). E-mail:tongzhou@bjtu.edu.cn
  • 作者简介:杨庆山(1968-),男,河北人,教授,博士,博导,主要从事结构风工程和古建筑木结构研究(E-mail:qshyang@cqu.edu.cn);闫渤文(1989-),男,河南人,副教授,博士,博导,主要从事结构风工程研究(E-mail:bowenyancq@cqu.edu.cn);Pham Van Phuc(1978-),男,越南人,高级研究员,博士,主要从事结构风工程研究(Email:p_phuc@shimz.co.jp);王京学(1991-),女,河北人,博士生,主要从事结构风工程研究(E-mail:14121095@bjtu.edu.cn).
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2018YJS122);国家自然科学基金项目(51720105005,51608075);重庆市科委基础与前沿研究计划项目(stc2017jcyjAX0180)

REVIEW OF INFLOW TURBULENCE GENERATION METHODS WITH LARGE EDDY SIMULATION FOR ATMOSPHERIC BOUNDARY LAYER

ZHOU Tong1,2, YANG Qing-shan2,3, YAN Bo-wen3, Pham Van Phuc4, WANG Jing-xue1,2   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Beijing's Key Laboratory of Structural Wind Engineering and Urban Wind Environment, Beijing 100044, China;
    3. School of Civil Engineering, Chongqing University, Chongqing, 400044, China;
    4. Institute of Technology, Shimizu Corporation, Tokyo 135-8530, Japan
  • Received:2019-06-28 Revised:2019-09-23 Online:2020-05-25 Published:2019-10-18

摘要: 随着计算资源的飞速发展以及数值模拟技术的不断进步,大涡模拟被越来越多地应用于结构风工程领域的研究。运用大涡模拟准确模拟结构风效应的关键问题之一是生成满足大气边界层风场特性的入口湍流条件。预前模拟法和人工合成法是目前主流的两类大涡模拟入口湍流生成方法。该文阐述了不同入口湍流生成方法的基本原理,并梳理其在结构风工程领域的发展。从结构风工程研究的角度出发,对比分析不同方法的特点及适用性。最后,针对当前大气边界层大涡模拟入口湍流生成方法存在的问题,提出了未来研究的展望。

关键词: 大涡模拟, 入口湍流生成方法, 综述, 结构风工程, 预前模拟法, 人工合成法

Abstract: With the rapid development of available computational resources and advanced simulation techniques, large-eddy simulation (LES) has attracted an increasing attention and been widely adopted in solving structural wind engineering problems. For the reliable simulation of wind effects on structures, the generation of inflow turbulence with prescribed statistical characteristics of being consistent with realistic wind flow characteristics in atmospheric boundary layer (ABL) is one of the key issues. And the existing inflow turbulence generation methods for LES can be classified into two main categories:precursor simulation method and synthetic turbulence generation method. This study introduced the rationale of different inflow turbulence generation methods and reviewed their development and applications in structural wind engineering. From the perspective of structural wind engineering, the features and validities of different methods are comparatively analyzed. Finally, several prospects for future research pertinent to inflow turbulence generation methods in structural wind engineering are proposed to solve the existing problems of inflow turbulence generation methods for large eddy simulation in atmospheric boundary layer.

Key words: large-eddy simulation (LES), inflow turbulence generation method, review, structural wind engineering, precursor simulation method, synthetic turbulence generation method

中图分类号: 

  • O357.5
[1] Ricci M, Patruno L, Miranda S D. Wind loads and structural response:Benchmarking LES on a low-rise building[J]. Engineering Structures, 2017, 144:26-42.
[2] Yan B, Li Q. Large-eddy simulation of wind effects on a super-tall building in urban environment conditions[J]. Structure & Infrastructure Engineering, 2015, 12(6):765-785.
[3] Dagnew A K, Bitsuamlak G T. Computational evaluation of wind loads on buildings:A review[J]. Wind & Structures, 2013, 16(6):629-660.
[4] Britter R E, Hanna S R. Flow and dispersion in urban areas[J]. Annual Review of Fluid Mechanics, 2003, 35(1):469-496.
[5] Nozu T, Kishida T, Tamura T, et al. LES of wind turbulence and heat environment around dense tall buildings[C]//Proceeding of the Fifth European and African Conference on Wind Engineering, Florence, Italy:Firenze University Press, 2009:241-244.
[6] Nakayama H, Takemi T, Nagai H. Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations[J]. Atmospheric Science Letters, 2012, 13(3):180-186.
[7] Park S B, Baik J J, Lee S H. Impacts of mesoscale wind on turbulent flow and ventilation in a densely built-up urban area[J]. Journal of Applied Meteorology and Climatology, 2015, 54(4):811-824.
[8] Tamura T. Towards practical use of LES in wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(10/11):1451-1471.
[9] Cochran L, Derickson R. A physical modeler's view of Computational Wind Engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4):139-153.
[10] 李孙伟. 边界层风场特性的CFD模拟[D]. 上海:同济大学, 2008:1-80. Li Sunwei. CFD simulation of wind field characteristics in the atmospheric boundary layer[D]. Shanghai:Tongji University, 2008:1-80. (in Chinese)
[11] Phuc P V, Nozu T, Kikuchi H, et al. Wind pressure distributions on buildings using the coherent structure Smagorinsky model for LES[J]. Journal of Computations, 2018, 6(2):32.
[12] Blackmore T, Batten W M J, Bahaj A S. Inlet grid-generated turbulence for large-eddy simulations[J]. International Journal of Computational Fluid Dynamics, 2013, 27(6/7):307-315.
[13] Enoki K, Ishihara T. A generalized canopy model and its application to the prediction to the prediction of urban wind climate[J]. Journal of Japan Society of Civil Engineers, 2012, 68(1):28-47. (in Japanese)
[14] Kaimal J C, Finnigan J J. Atmospheric boundary layer flows:their structure and measurement[M]. New York:Oxford University Press, 1994.
[15] Liu Z, Ishihara T, Tanaka T, et al. LES study of turbulent flow fields over a smooth 3-D hill and a smooth 2-D ridge[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 153:1-12.
[16] Spalart P R. Direct simulation of a turbulent boundary layer up to Reθ=1410[J]. Journal of Fluid Mechanics, 1988, 187:61-98.
[17] Lund T S, Wu X, Squires K D. Generation of turbulent inflow data for spatially-developing boundary layer simulations[J]. Journal of Computational Physics, 1998, 140(2):233-258.
[18] Nozawa K, Tamura T. Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(10):1151-1162.
[19] Kataoka H. Numerical simulations of a wind-induced vibrating square cylinder within turbulent boundary layer[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(10/11):1985-1997.
[20] 朱伟亮, 杨庆山. 湍流边界层中低矮建筑绕流大涡模拟[J]. 建筑结构学报, 2010, 31(10):41-47. Zhu Weiliang, Yang Qingshan. Large eddy simulation of now around a low-rise building immersed in turbulent boundary layer[J]. Chinese Journal of Building Structures, 2010, 31(10):41-47. (in Chinese)
[21] 王婷婷, 杨庆山. 基于FLUENT的大气边界层风场LES模拟[J]. 计算力学学报, 2012, 29(5):734-739. Wang Tingting, Yang Qingshan. Large eddy simulation of atmospheric boundary layer flow based on FLUENT[J]. Chinese Journal of Computational Mechanics, 2012, 29(5):734-739. (in Chinese)
[22] Aboshosha H, Bitsuamlak G, Damatty A E. Turbulence characterization of downbursts using LES[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 136:44-61.
[23] Li C, Wang J, Xiao Y. Large eddy simulation of turbulent atmospheric boundary layer through recycling-rescalingrevising method[C]//Proceeding of the Fourteenth International Symposium on Structural Engineering, Beijing, China:Science Press, 2016:705-711.
[24] Liu K, Pletcher R H. Inflow conditions for the large eddy simulation of turbulent boundary layers:A dynamic recycling procedure[J]. Journal of Computational Physics, 2006, 219(1):1-6.
[25] Jewkes J W, Chung Y M, Carpenter P W. Modifications to a turbulent inflow generation method for boundary-layer flows[J]. AIAA Journal, 2011, 49(1):247-250.
[26] Stevens R J A M, Graham J, Meneveau C. A concurrent precursor inflow method for large eddy simulations and applications to finite length wind farms[J]. Renewable Energy, 2014, 68:46-50.
[27] Spille-Kohoff A, Kaltenbach H J. Generation of turbulent inflow data with a prescribed shear-stress profile[C]//Proceedings of the Third AFOSR International Conference on DNS/LES, Arlington, Texas, United States:Greyden Press, 2001:319-326.
[28] Morgan B, Larsson J, Kawai S, et al. Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation[J]. AIAA Journal, 2011, 49(3):582-597.
[29] Rice S O. Mathematical analysis of random noise[J]. Bell System Technical Journal, 1944, 23(3):282-332.
[30] Shinozuka M, Sata Y. Simulation of nonstationary random process[J]. Journal of the Engineering Mechanics Division, 1967, 93(1):11-40.
[31] Shinozuka M. Simulation of multivariate and multidimensional random processes[J]. The Journal of the Acoustical Society of America, 1971, 49(1B):357-368.
[32] Shinozuka M, Jan C M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25(1):111-128.
[33] Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics, 1996, 122(8):778-787.
[34] 李正农, 刘艳萍, 王莺歌, 等. 近地边界层脉动风数值模拟[J]. 湖南大学学报(自然科学版), 2010, 37(4):6-10. Li Zhengnong, Liu Yanping, Wang Yingge, et al. The numerical simulation of fluctuation wind in the surface boundary layer[J]. Journal of Hunan University (Natural Sciences), 2010, 37(4):6-10. (in Chinese)
[35] Yang W W, Chang T Y P, Chang C C. An efficient wind field simulation technique for bridges[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997, 67(97):697-708.
[36] Yang J N. Simulation of random envelope processes[J]. Journal of Sound and Vibration, 1972, 21(1):73-85.
[37] Yang J N. On the normality and accuracy of simulated random processes[J]. Journal of Sound and Vibration, 1973, 26(3):417-428.
[38] 孙瑛, 林斌, 武岳, 等. 脉动风场数值模拟的POD-谐波合成法[J]. 哈尔滨工业大学学报, 2011, 43(12):13-17. Sun Ying, Lin Bin, Wu Yue, et al. WAWS/POD simulation of fluctuating wind field[J]. Journal of Harbin Institute of Technology, 2011, 43(12):13-17. (in Chinese)
[39] Ding Q, Zhu L, Xiang H. Simulation of stationary Gaussian stochastic wind velocity field[J]. Wind and Structures, 2006, 9(3):231-243.
[40] 罗俊杰, 韩大建. 谐波合成法模拟随机风场的优化算法[J]. 华南理工大学学报(自然科学版), 2007, 35(7):105-109. Luo Junjie, Han Dajian. Optimized algorithm of wave superposition method to simulate stochastic wind field[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(7):105-109. (in Chinese)
[41] 李春祥, 刘晨哲. 基于径向基神经网络的谐波叠加法[J]. 振动与冲击, 2010, 29(1):112-116. Li Chunxiang, Liu Chenzhe. RBF neural network based harmony superposition method[J]. Journal of Vibration and Shock, 2010, 29(1):112-116. (in Chinese)
[42] Huang G, Liao H, Li M. New formulation of Cholesky decomposition and applications in stochastic simulation[J]. Probabilistic Engineering Mechanics, 2013, 34:40-47.
[43] 祝志文, 黄炎. 大跨度桥梁脉动风场模拟的插值算法[J]. 振动与冲击, 2017, 36(7):156-163. Zhu Zhiwen, Huang Yan. Interpolation algorithm for fluctuating wind field simulation of long-span bridges[J]. Journal of Vibration and Shock, 2017, 36(7):156-163. (in Chinese)
[44] 陶天友, 王浩. 基于Hermite插值的简化风场模拟[J]. 工程力学, 2017, 34(3):187-193. Tao Tianyou, Wang Hao. Reduced simulation of the wind field based on Hermite interpolation[J]. Engineering Mechanics, 2017, 34(3):187-193. (in Chinese)
[45] Kraichnan, Robert H. Diffusion by a random velocity field[J]. Physics of Fluids, 1970, 13(1):22-31.
[46] Smirnov A, Shi S, Celik I. Random flow generation technique for large eddy simulations and particledynamics modeling[J]. Journal of Fluids Engineering, 2001, 123(2):359-371.
[47] Huang S H, Li Q S, Wu J R. A general inflow turbulence generator for large eddy simulation[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2010, 98(10):600-617.
[48] Castro H G, Paz R R. A time and space correlated turbulence synthesis method for large eddy simulations[J]. Journal of Computational Physics, 2013, 235(4):742-763.
[49] Aboshosha H, Elshaer A, Bitsuamlak G T, et al. Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 142:198-216.
[50] Yu Y, Yang Y, Xie Z. A new inflow turbulence generator for large eddy simulation evaluation of wind effects on a standard high-rise building[J]. Building and Environment, 2018, 138:300-313.
[51] Tamura Y, Suganuma S, Kikuchi H, et al. Proper orthogonal decomposition of random wind pressure field[J]. Journal of Fluids and Structures, 1999, 13(7/8):1069-1095.
[52] Chen X, Kareem A. Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures[J]. Journal of Engineering Mechanics, 2005, 131(4):325-339.
[53] Bernal D. Load vectors for damage localization[J]. Journal of Engineering Mechanics, 2002, 128(1):7-14.
[54] 陈波, 武岳, 沈世钊. 大跨度屋盖结构等效静力风荷载中共振分量的确定方法研究[J]. 工程力学, 2007, 24(1):51-55. Chen Bo, Wu Yue, Shen Shizhao. Study of the resonant component of equivalent static wind loads on large span roofs[J]. Engineering Mechanics, 2007, 24(1):51-55. (in Chinese)
[55] 陈波, 杨庆山. 国家体育场多目标等效静风荷载[J]. 土木建筑与环境工程, 2009, 31(6):27-33. Chen Bo, Yang Qingshan. Equivalent static wind load for multiple targets of China's national stadium[J]. Journal of Civil, Architecture & Environmental Engineering, 2009, 31(6):27-33. (in Chinese)
[56] Druault P, Lardeau S, Bonnet J P, et al. Generation of three-dimensional turbulent inlet conditions for large-eddy simulation[J]. AIAA Journal, 2004, 42(3):447-456.
[57] Perret L, Delville J, Manceau R, et al. Generation of turbulent inflow conditions for large eddy simulation from stereoscopic PIV measurements[J]. International Journal of Heat and Fluid Flow, 2006, 27(4):576-584.
[58] Perret L, Delville J, Manceau R, et al. Turbulent inflow conditions for large-eddy simulation based on low-order empirical model[J]. Physics of Fluids, 2008, 20(7):1521-178.
[59] Johansson P S, Andersson H I. Generation of inflow data for inhomogeneous turbulence[J]. Theoretical and Computational Fluid Dynamics, 2004, 18(5):371-389.
[60] Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulation[J]. Journal of Computational Physics, 2003, 186(2):652-665.
[61] Kempf A M, Wysocki S, Pettit M. An efficient, parallel low-storage implementation of Klein's turbulence generator for LES and DNS[J]. Computers & Fluids, 2012, 60:58-60
[62] Xie Z T, Castro I P. Efficient generation of inflow conditions for large eddy simulation of street-scale flows[J]. Flow Turbulence & Combustion, 2008, 81(3):449-470.
[63] Kim Y, Castro I P, Xie Z T. Divergence-free turbulence inflow conditions for large-eddy simulations with incompressible flow solvers[J]. Computers & Fluids, 2013, 84(18):56-68.
[64] Daniels S J, Castro I P, Xie Z T. Peak loading and surface pressure fluctuations of a tall model building[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2013, 120:19-28.
[65] Lamberti G, García-Sánchez C, Sousa J, et al. Optimizing turbulent inflow conditions for large-eddy simulations of the atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177:32-44.
[66] Mathey F, Cokljat D, Bertoglio J P, et al. Assessment of the vortex method for large eddy simulation inlet conditions[J]. Progress in Computational Fluid Dynamics, 2006, 6(1/2/3):58-67.
[67] Jarrin N, Benhamadouche S, Laurence D, et al. A synthetic-eddy method for generating inflow conditions for large-eddy simulations[J]. International Journal of Heat & Fluid Flow, 2006, 27(4):585-593.
[68] Jarrin N, Prosser R, Uribe J C, et al. Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method[J]. International Journal of Heat and Fluid Flow, 2009, 30(3):435-442.
[69] Luo Y, Liu H, Huang Q, et al. A multi-scale synthetic eddy method for generating inflow data for LES[J]. Computers & Fluids, 2017, 156:103-112.
[70] Luo Y, Liu H, Xue H, et al. Large-eddy simulation evaluation of wind loads on a high-rise building based on the multiscale synthetic eddy method[J]. Advances in Structural Engineering, 2019, 22(4):997-1006.
[1] 林强, 刘敏, 杨庆山, 吴凤波, 黄国庆. 非高斯风压峰值因子估计:基于矩的转换过程法的对比研究[J]. 工程力学, 2020, 37(4): 78-86.
[2] 俞怡恬, 黄生洪, 王新. 龙卷风冲击高层建筑气动力效应数值模拟[J]. 工程力学, 2020, 37(1): 168-174.
[3] 张锐, 李宏男, 王东升, 成虎. 结构时程分析中强震记录选取研究综述[J]. 工程力学, 2019, 36(2): 1-16.
[4] 李国强, 吉唱. 《结构理论史——探求平衡》概要[J]. 工程力学, 2019, 36(11): 13-26.
[5] 张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学, 2019, 36(10): 8-27.
[6] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[7] 杜晓庆, 王玉梁, 赵燕, 孙雅慧, 代钦. 高雷诺数下错列双圆柱气动干扰的机理研究[J]. 工程力学, 2018, 35(9): 223-231.
[8] 张志勇, 陈志华, 孙晓晖, 张旺龙. 基于品质因数的翼型绕流多孔抽吸控制[J]. 工程力学, 2018, 35(4): 242-248.
[9] 胡伟成, 杨庆山, 闫渤文, 张建. 基于谱元法的复杂地形风场大涡模拟[J]. 工程力学, 2018, 35(12): 7-14.
[10] 刘娇, 刘敬敏, 余波, 杨绿峰. 工程结构体系可靠度分析的最新研究进展[J]. 工程力学, 2017, 34(增刊): 31-37.
[11] 陈仁朋, 王诚杰, 鲁立, 孟凡衍. 开挖对地铁盾构隧道影响及控制措施[J]. 工程力学, 2017, 34(12): 1-13.
[12] 梁霆浩, 余锡平. 非均匀拟形冠层内大气流动特征的大涡模拟研究[J]. 工程力学, 2017, 34(1): 248-256.
[13] 艾辉林, 周志勇. 超高层建筑外表面复杂装饰条的风荷载特性研究[J]. 工程力学, 2016, 33(8): 141-149.
[14] 薛大文, 陈志华, 孙晓晖. 微涡流发生器对激波边界层作用诱导的流体分离控制[J]. 工程力学, 2016, 33(7): 227-233.
[15] 金伟良, 陈佳芸, 毛江鸿, 许晨, 夏晋. 电化学修复对钢筋混凝土结构服役性能的作用效应[J]. 工程力学, 2016, 33(2): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[2] 田力;高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究[J]. 工程力学, 2011, 28(11): 114 -123 .
[3] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[4] 李皓玉;杨绍普;齐月芹;徐步青. 移动随机荷载下沥青路面的动力学特性和参数影响分析[J]. 工程力学, 2011, 28(11): 159 -165 .
[5] 赵同峰;欧阳伟;郝晓彬. 方钢管钢骨高强混凝土压弯剪承载力分析[J]. 工程力学, 2011, 28(11): 153 -158, .
[6] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[7] 罗尧治;刘海锋;娄荣. 考虑焊接球节点变形的网壳结构多尺度有限元分析方法[J]. 工程力学, 2011, 28(11): 190 -196, .
[8] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[9] 王伟;蔡永梅;谢禹钧. 椭圆形截面管环向裂纹应力强度因子分析方法[J]. 工程力学, 2011, 28(11): 197 -201 .
[10] 王进廷;张楚汉;金峰. 有阻尼动力方程显式积分方法的精度研究[J]. 工程力学, 2006, 23(3): 1 -5 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日