工程力学 ›› 2020, Vol. 37 ›› Issue (5): 120-128.doi: 10.6052/j.issn.1000-4750.2019.07.0344

• 土木工程学科 • 上一篇    下一篇

高强钢筋约束超高性能混凝土柱轴心受压本构模型研究

邓宗才, 姚军锁   

  1. 北京工业大学城市与工程安全减灾省部共建教育部重点实验室, 北京 100124
  • 收稿日期:2019-07-04 修回日期:2019-10-13 出版日期:2020-05-25 发布日期:2019-10-25
  • 通讯作者: 邓宗才(1961-),男,陕西人,教授,博士,博导,主要从事超高性能混凝土及其结构方面的研究(E-mail:dengzc@bjut.edu.cn). E-mail:dengzc@bjut.edu.cn
  • 作者简介:姚军锁(1994-),男,山东人,硕士生,主要从事高强钢筋超高性能混凝土结构方面的研究(E-mail:17362268957@163.com).
  • 基金资助:
    北京市教委科技重点项目(KZ201810005008)

THE AXIAL COMPRESSION STRESS-STRAIN MODEL FOR ULTRA-HIGH PERFORMANCE CONCRETE COLUMNS CONFINED BY HIGH-STRENGTH STIRRUPS

DENG Zong-cai, YAO Jun-suo   

  1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2019-07-04 Revised:2019-10-13 Online:2020-05-25 Published:2019-10-25

摘要: 约束超高性能混凝土(ultra high performance concrete,UHPC)轴压本构模型是进行UHPC柱结构设计和非线性分析的基础。该文对9根箍筋约束UHPC柱的应力-应变关系进行了研究,结果表明:UHPC宜采用高强箍筋约束且适配性良好,与普通箍筋相比高强箍筋可较好的提高约束UHPC强度及变形能力;高体积率、小间距、形式复杂的高强箍筋的约束效果良好;高强箍筋在约束UHPC峰值应力时不一定屈服,取屈服强度计算峰值时高强箍筋的约束应力,会高估其对峰值应力的提高程度。基于Ottosen破坏准则推导了约束UHPC峰值应力计算式,给出了峰值应变、峰值应力时高强箍筋应力取值计算式;建立了约束UHPC轴压本构模型,并与几种典型的约束本构进行了对比,表明所建立的本构与试验曲线吻合度较高。

关键词: 高强箍筋, 超高性能混凝土, 轴心受压, 约束UHPC, 本构模型

Abstract: The axial compression constitutive model of confined ultra-high performance concrete (UHPC) is the basis of structural design and nonlinear analysis of UHPC columns. The axial compression test of nine UHPC columns confined by stirrups were performed in this study. The high-strength stirrups showed advantages in improving the strength and deformation performance of confined UHPC over normal stirrups, and better compatibility with UHPC than normal stirrups. The confined UHPC columns with high volume stirrup ratio, closely spaced, high-strength and complex ties configuration may lead to a smooth stress-strain curve, and significantly improves the strength and deformation performance of confined UHPC. The high-strength stirrups may not yield completely at the peak strength, indicating that using the yield strength of stirrups to calculate the confining pressure at the peak may overestimate the peak strength of confined UHPC. The formula of peak strain and high-strength stirrup stress at the peak point, and the formula of peak stress based on the Ottosen's failure criterion were drawn for confined UHPC. A new confined UHPC constitutive model was presented. Compared with other typical models, the new model agreed with the test curve.

Key words: high-strength stirrups, ultra-high performance concrete, axial compression, confined UHPC, constitutive model

中图分类号: 

  • TU375.3
[1] 覃维祖, 曹峰. 一种超高性能混凝土-活性粉末混凝土[J]. 工业建筑, 1999, 29(4):16-18. Qin Weizu, Cao Feng. A new ultra-high performance concrete-Reactive powder concrete[J]. Industrial Construction, 1999, 29(4):16-18. (in Chinese)
[2] 邓宗才, 肖锐, 徐海宾, 等. 高强钢筋超高性能混凝土梁的使用性能研究[J]. 哈尔滨工程大学学报, 2015, 36(10):1335-1340. Deng Zongcai, Xiao Rui, Xu Haibin, et al. Serviceability research of ultra-high performance concrete beams reinforced with high strength steel bars[J]. Journal of Harbin Engineering University, 2015, 36(10):1335-1340. (in Chinese)
[3] 邓宗才, 王义超, 肖锐, 等. 高强钢筋UHPC梁抗弯性能试验研究与理论分析[J]. 应用基础与工程科学学报, 2015, 23(1):68-78. Deng Zongcai, Wang Yichao, Xiao Rui, et al. Flexural test and theoretical analysis of UHPC beams with high strength rebars[J]. Journal of Basic Science and Engineering, 2015, 23(1):68-78. (in Chinese)
[4] 周文峰, 鲁瑛. 约束混凝土文献综述[J]. 四川建筑科学研究, 2007, 33(3):144-146. Zhou Wenfeng, Lu Ying. The summarization of literature of confined concrete[J]. Sichuan Building Science, 2007, 33(3):144-146. (in Chinese)
[5] Kent D C, Park R. Flexural members with confined concrete[J]. Journal of the Structural Division, 1971, 97(7):1969-1990.
[6] Sheikh S A, Uzumeri S M. Analytical model for concrete confinement in tied columns[J]. Journal of the Structural Division, 1982, 108(12):2703-2722.
[7] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[8] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京:清华大学出版社, 2007:103-188. Guo Zhenhai, Shi Xudong. Reinforced concrete theory and analyse[M]. Beijing:Tsinghua University Press, 2007:103-188. (in Chinese)
[9] Cusson D, Paultre P. Stress-strain model for confined high-strength concrete[J]. Journal of Structural Engineering, 1995, 121(3):468-477.
[10] Razvi S, Saatcioglu M. Confinement model for high-strength concrete[J]. Journal of Structural Engineering, 1999, 125(3):281-289.
[11] Sugano S, Kimura H, Shirai K. Study of new RC structures using ultra-high-strength fiber-reinforced concrete (UFC)-The challenge of applying 200 MPa UFC to earthquake resistant building structures[J]. Journal of Advanced Concrete Technology, 2007, 5(2):133-147.
[12] Empelmann M, Teutsch M, Steven G. Load-bearing behavior of centrically loading UHPFRC columns[C]//Fehling E, Schmidt M, Stűrwald S. Proceedings of the Second International Symposium on Ultra High Performance Concrete. Kassel:University of Kassel, Germany, 2008:521-528.
[13] Empelmann M, Teutsch M, Steven G. Expanding the application range of RC-columns by the use of UHPC[C]//Walraven J C, Stoelhorst D. Tailor Made Concrete Structures. London:CRC Press, 2008:461-468.
[14] Steven G, Empelmann M. UHPFRC-columns with high-strength longitudinal reinforcement[J]. Beton-und Stahlbetonbau, 2014, 109(5):344-354. (in German)
[15] British Standards Institution. Eurocode 2:Design of concrete structures-Part 1-1:General rules and rules for buildings[M]. Britain:British Standards Institution, 2004:33-35.
[16] Hosinieh M M, Aoude H, Cook W D, et al. Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading[J]. Engineering Structures, 2015, 99:388-401.
[17] Légeron F, Paultre P. Uniaxial confinement model for normal- and high-strength concrete columns[J]. Journal of Structural Engineering, 2003, 129(2):241-252.
[18] Aoude H. Structural behaviour of steel fibre reinforced concrete members[D]. Montreal, Quebec, Canada:McGill University, 2007:58-180.
[19] Yang X, Zohrevand P, Mirmiran A. Behavior of ultrahigh-performance concrete confined by steel[J]. Journal of Materials in Civil Engineering, 2016, 28(10):04016113.
[20] Shin H O, Min K H, Mitchell D. Confinement of ultra-high-performance fiber reinforced concrete columns[J]. Composite Structures, 2017, 176:124-142.
[21] Shin H O, Min K H, Mitchell D. Uniaxial behavior of circular ultra-high-performance fiber-reinforced concrete columns confined by spiral reinforcement[J]. Construction and Building Materials, 2018, 168:379-393.
[22] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2011. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[23] 郭晓宇, 亢景付, 朱劲松. 超高性能混凝土单轴受压本构关系[J]. 东南大学学报(自然科学版), 2017, 47(2):369-376. Guo Xiaoyu, Kang Jingfu, Zhu Jinsong. Constitutive relationship of ultrahigh performance concrete under uni-axial compression[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(2):369-376. (in Chinese)
[24] 史庆轩, 杨坤, 刘维亚, 等. 高强箍筋约束高强混凝土轴心受压力学性能试验研究[J]. 工程力学, 2012, 29(1):141-149. Shi Qingxuan, Yang Kun, Liu Weiya, et al. Experimental study on mechanical behavior of high strength concrete confined by high-strength stirrups under concentric loading[J]. Engineering Mechanics, 2012, 29(1):141-149. (in Chinese)
[25] 杨坤, 史庆轩, 赵均海, 等. 高强箍筋约束高强混凝土本构模型研究[J]. 土木工程学报, 2013, 46(1):34-41. Yang Kun, Shi Qingxuan, Zhao Junhai, et al. Study on the constitutive model of high-strength concrete confined by high-strength stirrups[J]. China Civil Engineering Journal, 2013, 46(1):34-41. (in Chinese)
[26] 史庆轩, 王南, 王秋维, 等. 高强箍筋约束高强混凝土轴心受压本构关系研究[J]. 工程力学, 2013, 30(5):131-137. Shi Qingxuan, Wang Nan, Wang Qiuwei, et al. Uniaxial compressive stress-strain model for high-strength concrete confined with high-strength lateral ties[J]. Engineering Mechanics, 2013, 30(5):131-137. (in Chinese)
[27] 史庆轩, 王南, 田园, 等. 高强箍筋约束高强混凝土轴心受压应力-应变全曲线研究[J]. 建筑结构学报, 2013, 34(4):144-151. Shi Qingxuan, Wang Nan, Tian Yuan, et al. Study on stress-strain relationship of high-strength concrete confined with high-strength stirrups under axial compression[J]. Journal of Building Structures, 2013, 34(4):144-151. (in Chinese)
[28] 吴涛, 魏慧, 刘喜, 等. 箍筋约束高强轻骨料混凝土柱轴压性能试验研究[J]. 工程力学, 2018, 35(2):203-213. Wu Tao, Wei Hui, Liu Xi, et al. Experimental study on axial compression behavior of confined high-strength light weight aggregate concrete under concentric loading[J]. Engineering Mechanics, 2018, 35(2):203-213. (in Chinese)
[29] Ottosen N S. A failure criterion for concrete[J]. Journal of Engineering Mechanics, 1997, 103(4):527-535.
[30] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9):135-144. Yu Bo, Tao Boxiong, Liu Shengbin. A probabilistic model for peak stress of concrete confined by ties[J]. Engineering Mechanics, 2018, 35(9):135-144. (in Chinese)
[1] 唐安特, 上官文斌, 潘孝勇, 刘文帅, 何青, AHMED Waizuddin. 橡胶隔振器高频动态特性的计算方法[J]. 工程力学, 2020, 37(1): 230-238.
[2] 梁兴文, 汪萍, 徐明雪, 于婧, 李林. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9): 95-107.
[3] 徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59.
[4] 李聪, 陈宝春, 黄卿维. 超高性能混凝土圆环约束收缩试验研究[J]. 工程力学, 2019, 36(8): 49-58.
[5] 徐明雪, 梁兴文, 汪萍, 王照耀. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70-78.
[6] 班慧勇, 白日升, 刘明, 李文斌, 白音. 钛-钢复合钢材力学性能及本构模型研究[J]. 工程力学, 2019, 36(7): 57-66.
[7] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7): 146-155.
[8] 袁洪魏, 赵龙, 董天宝, 颜熹琳, 唐维. TATB基PBX在不同围压下的Boltzmann-P本构模型及其数值计算方法[J]. 工程力学, 2019, 36(5): 19-27.
[9] 梁兴文, 汪萍, 徐明雪, 王照耀, 于婧, 李林. 配筋超高性能混凝土梁受弯性能及承载力研究[J]. 工程力学, 2019, 36(5): 110-119.
[10] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[11] 曹胜涛, 路德春, 杜修力, 赵密, 程星磊. 基于GPU并行计算的地下结构非线性动力分析软件平台开发[J]. 工程力学, 2019, 36(2): 53-65,86.
[12] 白卫峰, 刘霖艾, 管俊峰, 姚贤华. 基于统计损伤理论的硫酸盐侵蚀混凝土本构模型研究[J]. 工程力学, 2019, 36(2): 66-77.
[13] 冯程远, 李国强, 蒋彬辉. 钢材高温材性模型对火灾下钢框架结构倒塌模拟的影响研究[J]. 工程力学, 2019, 36(12): 24-36,78.
[14] 陈仁朋, 鲁立, 张阳, 吴怀娜. 盾构管片UHPC加固技术及力学性能分析[J]. 工程力学, 2019, 36(11): 41-49.
[15] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[3] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[4] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[5] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[6] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[7] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
[8] 富东慧;侯振德;秦庆华. 切槽对骨压电电压的影响[J]. 工程力学, 2011, 28(1): 233 -237 .
[9] 郭彦林;王永海. 两层通高区群柱面外稳定性能与设计方法研究[J]. 工程力学, 2011, 28(6): 52 -059 .
[10] 王 岚;常春清;邢永明. 胶粉改性沥青混合料弯曲蠕变试验研究[J]. 工程力学, 2011, 28(增刊I): 40 -043 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日