工程力学 ›› 2020, Vol. 37 ›› Issue (5): 129-139.doi: 10.6052/j.issn.1000-4750.2019.07.0345

• 土木工程学科 • 上一篇    下一篇

基于力流等效的环形网顶破力学行为解析方法

郭立平1, 余志祥1,2, 骆丽茹1, 齐欣1,2, 赵世春1,2   

  1. 1. 西南交通大学土木工程学院, 成都 610031;
    2. 陆地交通地质灾害防治技术国家工程实验室, 成都 611756
  • 收稿日期:2019-07-04 修回日期:2019-10-16 出版日期:2020-05-25 发布日期:2019-10-25
  • 通讯作者: 余志祥(1976-),男,四川人,副教授,博士,博导,主要从事结构工程相关研究(E-mail:yzxzrq@home.swjtu.edu.cn). E-mail:yzxzrq@home.swjtu.edu.cn
  • 作者简介:郭立平(1994-),男,甘肃人,博士生,主要从事防护结构研究(E-mail:liping0_0@my.swjtu.edu.cn);骆丽茹(1995-),女,四川人,硕士生,主要从事防护结构研究(E-mail:luoliruhhh@163.com);齐欣(1981-),女,辽宁人,讲师,博士,主要从事防护结构研究(E-mail:qixin_117@126.com);赵世春(1961-),男,黑龙江人,教授,博士,博导,主要从事结构工程相关研究(E-mail:zhaosc1961@163.com).
  • 基金资助:
    国家重点研发计划课题项目(2018YFC1505405);国家自然科学基金项目(51678504);四川省应用基础研究重点资助项目(2018JY0029);中国铁路总公司科研开发计划重点课题项目(2018KY10);中央高校基本科研业务费专项资金项目(2682019ZT04)

AN ANALYTICAL METHOD OF PUNCTURE MECHANICAL BEHAVIOR OF RING NETS BASED ON THE LOAD PATH EQUIVALENCE

GUO Li-ping1, YU Zhi-xiang1,2, LUO Li-ru1, QI Xin1,2, ZHAO Shi-chun1,2   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China;
    2. National Engineering Laboratory for Prevention and Control of Geological Disasters Inland Transportation, Chengdu 611756, China
  • Received:2019-07-04 Revised:2019-10-16 Online:2020-05-25 Published:2019-10-25

摘要: 该文提出了一种基于力流等效的环形网片解析计算方法,用于防护系统环形网拦截单元的顶破力学行为解析。考虑钢丝圈数影响,采用液压作动器控制的球冠形顶头对柔性钢丝网片进行位移加载,开展了8种规格共24张环形网片试件的拟静态顶破试验,明确了环形网片在顶破作用下的力-位移关系。根据试验结果,开展了力流分析,发现环形网片顶破极限状态的承载力主要受若干径向分布的环链影响,据此将力流路径上的环链等效为直线纤维,构建了基于力流等效的网片分析模型。采用Python程序求解获得模型的力与位移解,经与试验结果对比分析,验证了该方法的可靠性,同时,该模型可以揭示网片承载的薄弱区分布特征,并能反映网片顶破极限状态下的径向环链受拉特征。

关键词: 防护工程, 环形网, 解析方法, 顶破, 非线性, 力流等效

Abstract: An analytical method of steel ring net panel was proposed based on the load path equivalence to analyze the quasi-static puncturing mechanical behavior of the interception structure of flexible protective system against rockfall disasters. The quasi-static punching tests of 24 steel wire ring net panels of different numbers of windings were carried out, and the bearing capacity and deformation were obtained. According to the test results, it is found that the deformation and bearing capacity of specimens corresponding to the critical state was mainly affected by the ring chains on some specific force transferring paths. Therefore, an analytical model of the net panel can be established by substituting some straight fibers for the steel rings net in load transferring path based on load path equivalence. The formulas to calculate the maximum out-of-plane force and deflection of ring net panels has been derived. Python tools were used to realize the analytical method. By comparing with test results, the reliability of the proposed model was verified. In addition, this method is able to describe the weak zone of the steel wire ring net panel and reflect the dominant effect of ring chains on the failure of the net panel.

Key words: flexible barrier system, steel wire ring net panels, analytical method, puncture, nonlinear behavior, load path equivalent

中图分类号: 

  • TU312+.3
[1] Behnia P, Blais-Stevens A. Landslide susceptibility modelling using the quantitative random forest method along the northern portion of the Yukon Alaska Highway Corridor, Canada[J]. Natural Hazards, 2018, 90(3):1407-1426.
[2] Wendeler C, Volkwein A, McArdell B W, et al. Load model for designing flexible steel barriers for debris flow mitigation[J]. Canadian Geotechnical Journal, 2019, 56(6):893-910.
[3] 贺咏梅, 彭伟, 阳友奎. 边坡柔性防护系统的典型工程应用[J]. 岩石力学与工程学报, 2006, 25(2):323-328. He Yongmei, Peng Wei, Yang Youkui. Typical cases of slope flecible protection system[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2):323-328. (in Chinese)
[4] Yu Z X, Zhao L, Liu Y P, et al. Studies on flexible rockfall barriers for failure modes, mechanisms and design strategies:a case study of Western China[J]. Landslides, 2019, 16(2):347-362.
[5] Yu Z X, Zhao L, Guo L P, et al. Full-scale impact test and numerical simulation of a new-type resilient rock-shed flexible buffer structure[J]. Shock and Vibration, 2019, 2019:1-16.
[6] 柳春, 余志祥, 郭立平, 等. 基于SPH-FEM耦合方法的落石冲击拱形钢筋混凝土棚洞数值模拟[J]. 振动与冲击, 2019, 38(13):118-125. Liu Chun, Yu Zhixiang, Guo Liping, et al. Numerical simulation for rock-fall impacting an arch RC hangar tunnel based on SPH-FEM coupled method[J]. Journal of Vibration and Shock, 2019, 38(13):118-125. (in Chinese)
[7] Jones M A, Roth J, Wiseman K. Flexible rockfall mitigation design for varying site conditions[C]//Proceedings of the 68th Highway Geology Symposium. Georgia, USA:2017 Highway Geology Symposium (HGS), 2017:37-48.
[8] Singh P K, Kainthola A, Panthee S, et al. Rockfall analysis along transportation corridors in high hill slopes[J]. Environmental Earth Sciences, 2016, 75(5):1-11.
[9] Volkwein A, Schellenberg K, Labiouse V, et al. Rockfall characterisation and structural protection-a review[J]. Natural Hazards and Earth System Sciences, 2011, 11(9):2617-2651.
[10] Gentilini C, Govoni L, de Miranda S, et al. Three-dimensional numerical modelling of falling rock protection barriers[J]. Computers and Geotechnics, 2012, 44:58-72.
[11] 齐欣, 许浒, 余志祥, 等. 柔性拦截结构中减压环动态力学性能试验研究[J]. 工程力学, 2018, 35(9):188-196. Qi Xin, Xu Hu, Yu Zhixiang, et al. Dynamic mechanical property study of break rings in flexible protective system[J]. Engineering Mechanics, 2018, 35(9):188-196. (in Chinese)
[12] 汪敏, 石少卿, 崔廉明, 等. 被动防护网中U形消能件的力学性能分析[J]. 工程力学, 2016, 33(6):114-119, 145. Wang Min, Shi Shaoqing, Cui Lianming, et al. Mechanical performance analysis on U-brake energy dissipator used in passive protection nets[J]. Engineering Mechanics, 2016, 33(6):114-119, 145. (in Chinese)
[13] 赵世春, 余志祥, 韦韬, 等. 被动柔性防护网受力机理试验研究与数值计算[J]. 土木工程学报, 2013, 46(5):122-128. Zhao Shichun, Yu Zhixiang, Wei Tao, et al. Test study of force mechanism and numerical calculation of safety netting system[J]. China Civil Engineering Journal, 2013, 46(5):122-128. (in Chinese)
[14] 赵雅娜, 余志祥, 赵世春. 柔性防护系统环形拦截网分区等代模型[J]. 西南交通大学学报, 2019, 54(04):808-815. Zhao Yana, Yu Zhixiang, Zhao Shichun. Ring-net subdivision equivalent model of flexible protection system[J]. Journal of Southwest Jiaotong University, 2019, 54(4):808-815. (in Chinese)
[15] Escallón J P, Boetticher V, Wendeler C, et al. Mechanics of chain-link wire nets with loose connections[J]. Engineering Structures, 2015, 101:68-87.
[16] Qi X, Yu Z X, Zhao L, et al. A new numerical modelling approach for flexible rockfall protection barriers based on failure modes[J]. Advanced Steel Construction, 2018, 14(3):479-495.
[17] 赵世春, 余志祥, 赵雷, 等. 被动防护网系统强冲击作用下的传力破坏机制[J]. 工程力学, 2016, 33(10):24-34. Zhao Shichun, Yu Zhixiang, Zhao Lei, et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics, 2016, 33(10):479-495. (in Chinese)
[18] 郑颖人, 王乐, 孔亮, 等. 钢材破坏条件与极限分析法在钢结构中应用探索[J]. 工程力学, 2018, 35(1):55-65. Zheng Yingren, Wang Le, Kong Liang, et al. Steel damage condition and application of ultimate analysis method in steel structures[J]. Engineering Mechanics, 2018, 35(1):55-65. (in Chinese)
[19] 余志祥, 严绍伟, 许浒, 等. 活塞杆点支式柔性缓冲系统冲击力学行为[J]. 土木工程学报, 2018, 51(11):61-69, 112. Yu Zhixiang, Yan Shaowei, Xu Hu, et al. Mechanical behavior of piston rod point-supported flexible buffer system[J]. Engineering Mechanic, 2018, 51(11):61-69, 112. (in Chinese)
[20] Tan D, Yin J, Qin J, et al. New thoughts for impact force estimation on flexible barriers[C]//Advancing Culture of Living with Landslides. Ljubljana, Slovenia:Springer International Publishing, 2017:457-463.
[21] Yu Z X, Qiao Y K, Zhao L, et al. A simple analytical method for evaluation of flexible rockfall barrier Part 1:working mechanism and analytical solution[J]. Advanced Steel Construction, 2018, 14(2):115-141.
[22] Yu Z X, Qiao Y K, Zhao L, et al. A simple analytical method for evaluation of flexible rockfall barrier Part 2:application and full-scale test[J]. Advanced Steel Construction, 2018, 14(2):142-165.
[23] Buzzi O, Spadari M, Giacomini A, et al. Experimental testing of rockfall barriers designed for the low range of impact energy[J]. Rock Mechanics and Rock Engineering, 2013, 46(4):701-712.
[24] Bertrand D, Trad A, Chauvel R, et al. Discrete element simulation of an innovative metallic net dedicated to rockfall protection:a multi-scale approach[C]//Third Euro Mediterranean Symposium on Advances in Geomaterials and Structures. Djerba, Tunisie:LGC-ENIT, 2010:1-17.
[25] Bertrand D, Trad A, Limam A, et al. Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method:from the local scale to the structure scale[J]. Rock Mechanics and Rock Engineering, 2012, 2012(45):885-900.
[26] Spadari M, Giacomini A, Buzzi O, et al. Prediction of the Bullet Effect for Rockfall Barriers:a Scaling Approach[J]. Rock Mechanics and Rock Engineering, 2012, 45(2):131-144.
[27] Mentani A, Giacomini A, Buzzi O, et al. Numerical Modelling of a Low-Energy Rockfall Barrier:New Insight into the Bullet Effect[J]. Rock Mechanics and Rock Engineering, 2016, 49(4):1247-1262.
[28] Castro-Fresno, Del Coz Diaz J J, López L A, et al. Evaluation of the resistant capacity of cable nets using the finite element method and experimental validation[J]. Engineering Geology, 2008, 100(1):1-10.
[29] Koo R C H, Kwan J S H, Lam C, et al. Dynamic response of flexible rockfall barriers under different loading geometries[J]. Landslides, 2017, 14(3):905-916.
[30] Sasiharan N, Muhunthan B, Badger T C, et al. Numerical analysis of the performance of wire mesh and cable net rockfall protection systems[J]. Engineering Geology, 2006, 88(1):121-132.
[31] Escallón J P, Wendeler C, Chatzi E, et al. Parameter identification of rockfall protection barrier components through an inverse formulation[J]. Engineering Structures, 2014, 77:1-16.
[32] ISO17745 Steel wire ring net panels-definitions and specifications[S]. Switzerland:International Organization for Standardization, 2016.
[33] 陶慕轩, 丁然, 潘文豪, 等. 传统纤维模型的一些新发展[J]. 工程力学, 2018, 35(3):1-21. Tao Muxuan, Ding Ran, Pan Wenhao, et al. Some advances in conventional fiber beam-column model[J]. Engineering Mechanic, 2018, 35(3):1-21. (in Chinese)
[34] Hambleton J P, Buzzi O, Giacomini A, et al. Perforation of flexible rockfall barriers by normal block impact[J]. Rock Mechanics and Rock Engineering, 2013, 46(3):515-526.
[35] Coulibaly J B, Chanut M-A, Lambert S, et al. Nonlinear discrete mechanical model of steel rings[J]. Journal of Engineering Mechanics, 2017, 143(9):1-14.
[36] Gao Z, Al-Budairi H, Steel A. Experimental testing of low-energy rockfall catch fence meshes[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4):798-804.
[37] Xu H, Gentilini C, Yu Z X, et al. An energy allocation based design approach for flexible rockfall protection barriers[J]. Engineering Structures, 2018, 173:831-852.
[38] Grassl H, Volkwein A, Bartelt P. Experimental and numerical modeling of highly flexible rockfall protection barriers[C]//Soil and rock America, Massachusetts, USA:Verlag Glückauf, 2003:2589-2594.
[39] Cui L M, Wang M, Sun J H, et al. Theoretical study on the reinforcement capacity of cable nets in active rockfall protection system[J]. Engineering Transactions, 2017, 65(2):391-401.
[1] 苏璞, 李钢, 余丁浩. 基于子结构的Woodbury非线性分析方法[J]. 工程力学, 2020, 37(5): 26-35.
[2] 陈再现, 杨续波. 组合材料加固砖砌体的有限元模拟方法[J]. 工程力学, 2020, 37(4): 96-104.
[3] 苏小卒, 王伟. “依赖应变历史材料”结构动力松弛法静力分析中规避虚假应变历史的非线性弹性增量算法[J]. 工程力学, 2020, 37(3): 120-130.
[4] 宋碧颖, 王登峰, 王元清, 方滨. 除尘器壳体双肢组合截面立柱轴压稳定性研究[J]. 工程力学, 2020, 37(3): 228-237.
[5] 周坤涛, 杨涛, 葛根. 基于新型振型函数的渐细变截面悬臂梁的自由振动理论与实验研究[J]. 工程力学, 2020, 37(3): 28-35.
[6] 李钢, 吕志超, 余丁浩. 隔离非线性分层壳有限单元法[J]. 工程力学, 2020, 37(3): 18-27.
[7] 张健, 齐朝晖, 卓英鹏, 国树东. 基于精确几何模型梁单元的螺旋弹簧刚度分析[J]. 工程力学, 2020, 37(2): 16-22,80.
[8] 韩明君, 王伟兵, 李鸿瑞, 周朝逾, 马连生. 单圆弧波纹管膜片的非线性大变形分析[J]. 工程力学, 2020, 37(1): 26-33.
[9] 唐安特, 上官文斌, 潘孝勇, 刘文帅, 何青, AHMED Waizuddin. 橡胶隔振器高频动态特性的计算方法[J]. 工程力学, 2020, 37(1): 230-238.
[10] 曹胜涛, 李志山, 刘付钧, 黄忠海. 基于Bouc-Wen模型的消能减震结构显式非线性时程分析[J]. 工程力学, 2019, 36(S1): 17-24.
[11] 李佳龙, 李钢, 李宏男. 基于隔离非线性的实体单元模型与计算效率分析[J]. 工程力学, 2019, 36(9): 40-49,59.
[12] 许斌, 李靖. 未知地震激励下结构恢复力及质量非参数化识别[J]. 工程力学, 2019, 36(9): 180-187.
[13] 赵子翔, 苏小卒. 摇摆结构刚体模型研究综述[J]. 工程力学, 2019, 36(9): 12-24.
[14] 杨超, 罗尧治, 郑延丰. 正交异性膜材大变形行为的有限质点法求解[J]. 工程力学, 2019, 36(7): 18-29.
[15] 杨浩文, 吴斌, 潘天林, 谢金哲. Timoshenko梁能量守恒逐步积分算法[J]. 工程力学, 2019, 36(6): 21-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[3] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[4] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[5] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[6] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[7] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
[8] 王根会;甘亚南;王振波. 宽翼薄壁工字形梁动力反应的能量变分法[J]. 工程力学, 2010, 27(8): 15 -020 .
[9] 富东慧;侯振德;秦庆华. 切槽对骨压电电压的影响[J]. 工程力学, 2011, 28(1): 233 -237 .
[10] 郭彦林;王永海. 两层通高区群柱面外稳定性能与设计方法研究[J]. 工程力学, 2011, 28(6): 52 -059 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日