工程力学 ›› 2020, Vol. 37 ›› Issue (5): 140-155,165.doi: 10.6052/j.issn.1000-4750.2019.07.0352

• 土木工程学科 • 上一篇    下一篇

微波加热岩石与混凝土的研究进展与工程应用

邵珠山1,3, 魏玮1,3, 陈文文1,3, 郜介璞2,3, 袁媛1,3   

  1. 1. 西安建筑科技大学土木工程学院, 陕西 710055;
    2. 西安建筑科技大学理学院, 陕西 710055;
    3. 西安建筑科技大学陕西省岩土与地下空间工程重点实验室, 陕西 710055
  • 收稿日期:2019-07-03 修回日期:2020-01-17 出版日期:2020-05-25 发布日期:2020-03-20
  • 通讯作者: 邵珠山(1968-),男,山东人,教授,博士,博导,主要从事岩石细观力学地下工程工艺力学研究(E-mail:shaozhushan@xauat.edu.cn). E-mail:shaozhushan@xauat.edu.cn
  • 作者简介:魏玮(1992-),女,陕西人,博士生,主要从事岩石细观力学多场耦合效应研究(E-mail:vivian920806@163.com);陈文文(1995-),男,江西人,硕士生,主要从事混凝土和岩石材料热力学研究(E-mail:chenwenwen2014@163.com);郜介璞(1994-),男,陕西人,硕士生,主要从事工程结构防火研究(E-mail:yx15343407342@sina.com);袁媛(1993-),女,内蒙古人,博士生,主要从事岩石细观力学与工程结构防火研究(E-mail:yuanyuan@live.xauat.edu.cn).
  • 基金资助:
    国家自然科学基金面上项目(11872287)

RESEARCH PROGRESS AND INDUSTRIAL APPLICATIONS OF MICROWAVE HEATING PROCESSING ON ROCK AND CONCRETE

SHAO Zhu-shan1,3, WEI Wei1,3, CHEN Wen-wen1,3, GAO Jie-pu2,3, YUAN Yuan1,3   

  1. 1. Xi'an University of Architecture and Technology And College of Civil Engineering, Shanxi 710055, China;
    2. Xi'an University of Architecture and Technology And College of Science, Shanxi 710055, China;
    3. Shaanxi Key Laboratory for Geotechnical and Underground Space Engineering, Xi'an University of Architecture and Technology, Shaanxi 710055, China
  • Received:2019-07-03 Revised:2020-01-17 Online:2020-05-25 Published:2020-03-20

摘要: 微波加热固体是新型的绿色、高效加热技术,具有即时性、整体性、选择性以及低能耗低污染等优点,微波辅助岩石和混凝土的破碎技术是国内外研究的热点方向。针对微波加热岩石和混凝土的机理和加热特点,国内外学者开展了一系列理论分析、模型模拟以及试验研究。该文系统总结了该领域理论、模拟以及试验的研究进展,在论述微波加热特点、材料对微波加热响应以及加热影响因素的基础上,阐述了微波加热岩石和混凝土的内在机制,讨论了微波加热在岩石强度劣化、辅助岩石破碎、岩石钻孔、混凝土骨料回收以及微波辅助选矿等工程领域的研究现状与应用前景,探讨了相关领域的研究重点以及未来的研究方向,以期为推动工程中微波加热技术的应用和发展提供借鉴与参考。

关键词: 微波加热, 岩石, 混凝土, 影响因素, 工程应用

Abstract: Microwave heating is a green, effective and sustainable technology, with the heating characteristics of immediate, volumetric, selective and low pollution presented. The recent interest in fundamentals and applications of microwave processing of rock and concrete is highlighted by many symposia, scholars and research groups all over the world due to its potential for significant process benefit. Many theoretical analyses, simulations and experimental tests were carried out subject to the heating mechanism and properties. The review systematically summarizes the important research results from previous studies. The mechanism and advantages of microwave assisted breaking and the influence factors relating to the microwave processing efficiency were discussed. The research status and application prospect of microwave assisted rock breaking and drilling, concrete aggregate recycling, and mineral sorting were discussed. The research focus and future research direction in related fields are discussed in order to provide a reference and recourse for promoting the application and development of microwave heating technology in engineering.

Key words: microwave heating, rock, concrete, influence factors, engineering applications

中图分类号: 

  • TU528
[1] 刘柏禄, 潘建忠, 谢世勇. 岩石破碎方法的研究现状及展望[J]. 中国钨业, 2011, 26(1):15-19. Liu Bailu, Pan Jianzhong, Xie Shiyong. On the research development of rock fragmentation and its prospect[J]. China Tungsten Industry, 2011, 26(1):15-19. (in Chinese)
[2] 周子龙, 李夕兵, 刘希灵. 深部岩石破碎方法[J]. 矿山压力与顶板管理, 2005(3):63-65. Zhou Zilong, Li Xibing, Liu Xiling. Deep rock crushing method[J]. Ground Pressure and Strata Control, 2005(3):63-65. (in Chinese)
[3] 胡治春, 李国新, 欧阳孟学. 废弃混凝土回收利用的研究进展[J]. 商品混凝, 2016(1):30-32. Hu Zhichun, Li Guoxin, OuYang Mengxue. The Research progress on recycling of waste concrete[J]. Ready-Mixed Concrete, 2016(1):30-32. (in Chinese)
[4] 梁芮, 于江, 秦拥军. 废弃混凝土再生骨料的研究综述[J]. 混凝土, 2013(5):93-96. Liang Rui, Yu Jiang, Qin Yongjun. Research summarize on waste concrete recycled aggregate[J]. Concrete, 2013(5):93-96. (in Chinese)
[5] Jones D A, Lelyveld T P, Mavrofidis S D, et al. Microwave heating applications in environmental engineering-A review[J]. Resources Conservation & Recycling, 2002, 34(2):75-90.
[6] Jones D A, Kingman S W, Whittles D N, t al. The influence of microwave energy delivery method on strength reduction in ore samples[J]. Chemical Engineering and Processing, 2007, 46(4):291-299.
[7] Jones D A. Microwave processing of cement and concrete materials-Towards an industrial reality[J]. Cement and Concrete Research, 2015, 68:112-123.
[8] Jones D A, Kingman S W, Whittles D N, et al. Understanding microwave assisted breakage[J]. Minerals Engineering, 2005, 18(7):659-669.
[9] Kingman S W, Jackson K, Bradshaw S M, et al. An investigation into the influence of microwave treatment on mineral ore comminution[J]. Powder Technology, 2004, 146(3):176-184.
[10] Kingman S W, Rowson N A. Microwave treatment of minerals-A review[J]. Minerals Engineering, 1998, 11(11):1081-1087.
[11] Kingman S W, Jackson K, Cumbane A, et al. Recent developments in microwave-assisted comminution[J]. International Journal of Mineral Processing, 2004, 74(1):71-83.
[12] Hassani F, Nekoovaght P. The development of microwave assisted machineries to break hard rocks[C]//The 28th International Symposium on Automation and Robotics in Construction (ISARC), 2011:678-684.
[13] Hassani F, Nekoovaght P M, Gharib N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1):1-15.
[14] Nejati H, Hassani F, Radziszewski P. Experimental investigation of fracture toughness reduction and fracture development in basalt specimens under microwave illumination[C]//Earth and Space 2012:Engineering, Science, Construction, and Operations in Challenging Environments, 2012, 325-334.
[15] Toifl M, Hartlieb P, Meisels R, et al. Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite[J]. Minerals Engineering, 2017, 103:78-92.
[16] Meisels R, Toifl M, Hartlieb P, et al. Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks[J]. International Journal of Mineral Processing, 2015, 135:40-51.
[17] Toifl M, Meisels R, Hartlieb P, et al. 3D numerical study on microwave induced stresses in inhomogeneous hard rocks[J]. Minerals Engineering, 2016, 90(Suppl 1):29-42.
[18] Hartlieb P, Toifl M, Kuchar F, et al. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution[J]. Minerals Engineering, 2016, 91:34-41.
[19] Hartlieb P, Leindl M, Kuchar F, et al. Damage of basalt induced by microwave irradiation[J]. Minerals Engineering, 2012, 31:82-89.
[20] Peinsitt T, Kuchar F, Hartlieb P, et al. Microwave heating of dry and water saturated basalt, granite and sandstone[J]. International Journal of Mining and Mineral Engineering, 2010, 2(1):18-29.
[21] Lovás M, Kováčová M, Dimitrakis G, et al. Modeling of microwave heating of andesite and minerals[J]. International Journal of Heat and Mass Transfer, 2010, 53(17):3387-3393.
[22] Znamenácková I, Lovás M, Hajek M, et al. Melting of andesite in a microwave oven[J]. Journal of Mining and Metallurgy, Section B:Metallurgy, 2003, 39(3/4):549-557.
[23] Lovás M, Znamenáčková I, Zubrik A, et al. The application of microwave energy in mineral processing-a review[J]. Acta Montanistica Slovaca, 2011, 16(2):137.
[24] Ali A Y, Bradshaw S M. Quantifying damage around grain boundaries in microwave treated ores[J]. Chemical Engineering and Processing:Process Intensification, 2009, 48(11):1566-1573.
[25] Ali A Y, Bradshaw S M. Confined particle bed breakage of microwave treated and untreated ores[J]. Minerals Engineering, 2011, 24(14):1625-1630.
[26] Bradshaw S M, Ali A Y, Marchand R, et al. Performance quantification of applicators for microwave treatment of crushed mineral ore[J]. Journal of Microwave Power and Electromagnetic Energy, 2011, 45(1):30-35.
[27] Metaxas A C, Meredith R J. Industrial microwave heating[M]. London:Peter Peregrinus Ltd, 1983.
[28] McMaster R C. Nondestructive testing handbook. Volume 1-Leak testing[M]. Columbus:American Society of Nondestructive Testing, 1982.
[29] Mingos D M P, Baghurst D R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry[J]. Chemical Society Reviews, 1991, 22(36):301-301.
[30] Clark D E, Folz D C, West J K. Processing materials with microwave energy[J]. Materials Science and Engineering:A, 2000, 287(2):153-158.
[31] 唐欣薇, 黄文敏, 周元德, 张楚汉. 层状岩石细观构造表征及劈拉受载各向异性行为研究[J]. 工程力学, 2018, 35(9):153-160. Tang Xinwei, Huang Wenmin, Zhou Yuande, et al. Mesoscale structure reconstruction and anisotropic behavior modeling of layered rock under splitting-tensile loading[J]. Engineering Mechanics, 2018, 35(9):153-160. (in Chinese)
[32] Haque K E. Microwave energy for mineral treatment processes-a brief review[J]. International Journal of Mineral Processing, 1999, 57(1):1-24.
[33] Thostenson E T, Chou T W. Microwave processing:fundamentals and applications[J]. Composites Part A:Applied Science and Manufacturing, 1999, 30(9):1055-1071.
[34] Bengtsson N E, Risman P O. Dielectric Properties of Foods at 3 GHz as Determined by a Cavity Perturbation Technique, II. Measurements on Food Materials[J]. The Journal of microwave power, 1971, 6(2):107-123.
[35] Venkatesh M S, Raghavan G S V. An overview of dielectric properties measuring techniques[J]. Canadian Biosystems Engineering, 2005, 47(7):15-30.
[36] Ayappa K G, Davis H T, Davis E A, et al. Analysis of microwave heating of materials with temperature -dependent properties[J]. American of Institute of Chemical Engineers Journal, 1991, 37(3):313-322.
[37] Stratton J A. Electromagnetic theory[M]. New York:McGraw-Hill, 2007.
[38] Stuchly S S, Hamid M A K. Physical parameter in microwave heating processes[J]. Journal of Microwave Power, 1972, 7(2):117-137.
[39] Saltiel C, Datta A K. Heat and mass transfer in microwave processing[J]. Advances in Heat Transfer, 1999, 33:1-94.
[40] Lester E, Kingman S. The effect of microwave pre-heating on five different coals[J]. Fuel, 2004, 83(14):1941-1947.
[41] Barringer S A, Davis E A, Gordon J, et al. Microwave-Heating Temperature Profiles for Thin Slabs Compared to Maxwell and Lambert Law Predictions[J]. Journal of Food Science, 1995, 60(5):1137-1142.
[42] Liu C M, Wang Q Z, Sakai N. Power and temperature distribution during microwave thawing, simulated by using Maxwell's equations and Lambert's law[J] International Journal of Food Science & Technology, 2005, 40(1):9-21.
[43] Ayappa K G, Davis H T, Crapiste G, et al. Microwave heating:an evaluation of power formulations[J]. Chemical engineering science, 1991, 46(4):1005-1016.
[44] Lu Gao-Ming, Feng Xia-Ting, Li Yuan-Hui, et al. The Microwave-Induced Fracturing of Hard Rock[J]. Rock Mechanics and Rock Engineering, 2019, 52(9):3017-3032.
[45] Omran M, Fabritius T, Mattila R. Thermally assisted liberation of high phosphorus oolitic iron ore:A comparison between microwave and conventional furnaces[J]. Powder Technology, 2015, 269:7-14.
[46] Chen T T, Dutrizac J E, Haque K E, et al. The relative transparency of minerals to microwave radiation[J]. Canadian Metallurgical Quarterly, 1984, 23(3):349-351.
[47] Hartlieb P, Leindl M, Kuchar F, et al. Damage of basalt induced by microwave irradiation[J]. Minerals Engineering, 2012, 31:82-89.
[48] 唐阳, 徐国宾, 孙丽莹, 等. 不同间断比尺下微波诱发岩石损伤的离散元模拟研究[J]. 水力发电学报, 2016, 35(7):15-22. Tang Yang, Xu Guobin, Sun Liying, et al. Discrete element modeling of microwave-induced rock damage at different discontinuity scales[J]. Journal of Hydroelectric Engineering, 2016, 35(7):15-22. (in Chinese)
[49] Song S, Campos-Toro E F, López-Valdivieso A. Formation of micro-fractures on an oolitic iron ore under microwave treatment and its effect on selective fragmentation[J]. Powder technology, 2013, 243:155-160.
[50] Guo S H, Guo C, Peng J H, et al. Microwave assisted grinding of ilmenite ore[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9):2122-2126.
[51] Itaya Y, Uchiyama S, Hatano S, et al. Drying enhancement of clay slab by microwave heating[J]. Drying Technology, 2005, 23(6):1243-1255.
[52] 戴俊, 李传净, 杨凡,等. 微波照射下含水率对岩石强度弱化的影响[J]. 水力发电, 2018, 40(1):31-34. Dai Jun, Li Chuanjing, Yang Fan, et al. Effect of different moisture content on weakening strength of rock under microwave irradiation[J]. Water Power, 2018, 40(1):31-34. (in Chinese)
[53] Akbarnezhad A, Ong K C G, Zhang M H, et al. Microwave-assisted beneficiation of recycled concrete aggregates[J]. Construction and Building Materials, 2011, 25(8):3469-3479.
[54] Abdelghani-Idrissi M A. Experimental investigations of occupied volume effect on the microwave heating and drying kinetics of cement powder in a mono-mode cavity[J]. Applied Thermal Engineering, 2001, 21(9):955-965.
[55] Peinsitt T, Kuchar F, Hartlieb P, et al. Microwave heating of dry and water saturated basalt, granite and sandstone[J]. International Journal of Mining and Mineral Engineering, 2010, 2(1):18-29.
[56] Sikong L, Bunsin T. Mechanical property and cutting rate of microwave treated granite rock[J]. Songklanakarin Journal of Science and Technology, 2009, 31(4):447-52.
[57] Toifl M, Hartlieb P, Meisels R, et al. Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite[J]. Minerals Engineering, 2016, 103(Suppl 1):78-92.
[58] Wang Y, Djordjevic N. Thermal stress FEM analysis of rock with microwave energy[J]. International Journal of Mineral Processing, 2014, 130:74-81.
[59] 李元辉, 卢高明, 冯夏庭, 等. 微波加热路径对硬岩破碎效果影响试验研究[J]. 岩石力学与工程学报, 2017, 36(6):1460-1468. Li Yuanhui, Lu Gaoming, Feng Xiating, et al. The influence of heating path on the effect of hard rock fragmentation using microwave assisted method[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6):1460-1468. (in Chinese)
[60] Lagos L E, Li W, Ebadian M A, et al. Heat transfer within a concrete slab with a finite microwave heating source[J]. International Journal of Heat and Mass Transfer, 1995, 38(5):887-897.
[61] Goangseup Zi, Zdeněk P. Bažant, F.ASCE. Decontamination of radionuclides from concrete by microwave heating:Computations[J]. Journal of Ⅱ Engineering Mechanics, 129(7), 785-792.
[62] 田军, 卢高明, 冯夏庭, 等. 主要造岩矿物微波敏感性试验研究[J]. 岩土力学, 2019, 40(6):2066-2074. Tian Jun, Lu Gaoming, Feng Xiating, et al. Experimental study of the microwave sensitivity of main rock-forming minerals[J]. Rock and Soil Mechanics, 2019, 40(6):2066-2074. (in Chinese)
[63] Rattanadecho P, Suwannapum N, Cha-um W. Interactions between electromagnetic and thermal fields in microwave heating of hardened type I-cement paste using a rectangular waveguide (influence of frequency and sample size)[J]. Journal of Heat Transfer, 2009, 131(8):082101.
[64] Salsman J B, Williamson R L, Tolley W K, et al. Short-pulse microwave treatment of disseminated sulfide ores[J]. Minerals Engineering, 1996, 9(1):43-54.
[65] Somani A et al. Pre-treatment of rocks prior to comminution-A critical review of present practices[J]. Int J Min Sci Technol, 2017, 27(2):339-348.
[66] Santamarina J C. Rock Excavation with Microwaves:A Literature Review[C]//Foundation Engineering. The American Society of Civil Engineers, 2015.
[67] Nekoovaght Motlagh P. An investigation on the influence of microwave energy on basic mechanical properties of hard rocks[J]. Thin Solid Films, 2009, 518(3):957-961.
[68] H. Nejati, Analysis of Physical Properties and Thermo-Mechanical Induced Fractures of Rocks Subjected to Microwave Radiation[D]. McGill:Department of Mining and Materials, 2014.
[69] Lindroth D P, Morrell R J, Blair J R. Microwave assisted hard rock cutting[P]. Google Patents, 1991.
[70] Lindroth D P, Berglund W R, Morrell R J, et al. Microwave assisted drilling in hard rock[J]. Tunnels & Tunnelling International, 1993, 25(6):24-27.
[71] Nekoovaght P M. Physical and mechanical properties of rocks exposed to microwave irradiation:potential application to tunnel boring[D]. Montreal, Quebec, Canada:Department of Mining and Materials, McGill University, 2015.
[72] 卢高明, 李元辉, Hassani Ferri, 等. 微波辅助机械破岩试验和理论研究进展[J]. 岩土工程学报, 2016, 38(8):1497-1506. Lu Gaoming, Li Yuanhui, Hassani Ferri, et al. Review of theoretical and experimental studies on mechanical rock fragmentation using microwave-assisted approach[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8):1497-1506. (in Chinese)
[73] 戴俊, 孟振, 吴丙权. 微波照射对岩石强度的影响研究[J]. 有色金属(选矿部分), 2014(3):54-57. Dai Jun, Meng Zhen, Wu Bingquan. Study on impact of rock strength by microwave irradiation[J]. Nonferrous Metals (Mining section), 2014(3):54-57. (in Chinese)
[74] Lu G M, Feng X T, Li Y H, et al. The MicrowaveInduced Fracturing of Hard Rock[J]. Rock Mechanics and Rock Engineering, 2019, 52(9):3017-3032.
[75] Xing Li, Shuai Wang, Ying Xu, et al. Effect of microwave irradiation on dynamic mode-Ι fracture parameters of Barre granite[J]. Engineering Fracture Mechanics, 2019, 224:106748.
[76] Hartlieb P, Bock S. Theoretical Investigations on the Influence of Artificially Altered Rock Mass Properties on Mechanical Excavation[J]. Rock Mechanics and Rock Engineering, 2018, 51(3):801-809.
[77] 秦立科, 徐国强, 甄刚. 基于颗粒流模型微波辅助破岩过程数值模拟[J]. 西安科技大学学报, 2019(1):112-118. Qin Like, Xu Guoqiang, Zhen Gang. Numerical simulation of rock fragmentation under microwave irradiation using particle flow method[J]. Journal of Xi'an University of Science and Technology, 2019(1):112-118. (in Chinese)
[78] Gong Q, Yin L, Ma H, et al. TBM tunneling under adverse geological conditions:An overview[J]. Tunnelling and Underground Space Technology, 2016, 57(S1):4-17.
[79] Jerby E, Dikhtyar V, Aktushev O, et al. The microwave drill[J]. Science, 2002, 298(5593):587-589.
[80] Jerby E, Nerovny Y, Meir Y, et al. A Silent Microwave Drill for Deep Holes in Concrete[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 66(1):522-529.
[81] Eshet Y, Mann R R, Anaton A, et al. Microwave Drilling of Bones[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(6):1174-1182.
[82] Long S, Yan C, Dong J. Microwave-promoted burning of Portland cement clinker[J]. Cement and Concrete Research, 2002, 32(1):17-21.
[83] Tsujino M, Noguchi T, Kitagaki R, et al. Completely recyclable concrete of aggregate-recovery type by using microwave heating[J]. Journal of Structural and Construction Engineering (Transactions of AIJ), 2011, 76(660):223-229.
[84] Kim K H, Cho H C, Ahn J W. Breakage of waste concrete for liberation using autogenous mill[J]. Minerals Engineering, 2012, 35:43-45.
[85] Ulsen C, Kahn H, Hawlitschek G, et al. Separability studies of construction and demolition waste recycled sand[J]. Waste Management, 2013, 33(3):656-662.
[86] 王玉银, 王庆贺, 耿悦. 建筑结构用再生混凝土水平受力构件研究进展[J]. 工程力学, 2018, 35(4):1-15. Wang Yuyin, Wang Qinghe, Geng Yue. State-of-art of horizontal structural members using recycled aggregate concrete[J]. Engineering Mechanics, 2018, 35(4):1-15. (in Chinese)
[87] 李冬, 金浏, 杜修力, 等. 考虑细观组分影响的混凝土宏观力学性能理论预测模型[J]. 工程力学, 2019, 36(5):67-75. Li Dong, Jin Liu, Du Xiuli. A Theoretical prediction model of concrete macroscopic mechanical properties considering the influence of mesoscopic composition[J]. Engineering Mechanics, 2019, 36(5):67-75. (in Chinese)
[88] Everaert M, Stein R, Michaux S, et al. Microwave radiation as a pre-treatment for standard and innovative fragmentation techniques in concrete recycling[J]. Materials, 2019, 12(3):488.
[89] Chen T T, Dutrizac J E, Haque K E, et al. The relative transparency of minerals to microwave radiation[J]. Canadian Metallurgical Quarterly, 1984, 23(3):349-351.
[90] Liu Chunpeng, Xu Yousheng, Hu Yixin. Application of microwave radiation to extractive metallurgy[J]. Journal of Materials Science & Technology, 1990(2):121-124.
[91] Standish N, Worner H. Microwave Application in the Reduction of Metal Oxides with Carbon[J]. Journal of Microwave Power and Electromagnetic Energy, 1990, 25(3):177-180.
[92] Kingman S W, Vorster W, Rowson N A. The influence of mineralogy on microwave assisted grinding[J]. Minerals Engineering, 2000, 13(3):313-327.
[93] Vorster W, Rowson N A, Kingman S W. The effect of microwave radiation upon the processing of Neves Corvo copper ore[J]. International Journal of Mineral Processing, 2001, 63(1):29-44.
[94] Ye Q, Chen J, Chen G, et al. Effect of microwave heating on the microstructures and kinetics of carbothermal reduction of pyrolusite ore[J]. Advanced Powder Technology, 2018, 29(8):1871-1878.
[95] Batchelor A R, Ferrari-John R S, Katrib J, et al. Pilot scale microwave sorting of porphyry copper ores:Part 2-Pilot plant trials[J]. Minerals Engineering, 2016, 98:328-338.
[96] Stir M, Ishizaki K, Vaucher S, et al. Mechanism and kinetics of the reduction of magnetite to iron during heating in a microwave E-field maximum[J]. Journal of Applied Physics, 2009, 105(12):124901.
[97] Kim J S, Jo H Y, Choi N C. Calcium and sodium recovery from microwave-pretreated red mud with added solid ammonium chloride[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(12):3960-3969.
[98] Wang J P, Jiang T, Liu Y J, et al. Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(2):160-167.
[99] Meng Yang, Tang Luyao, Yan Yuxin, et al. Effects of microwave-enhanced pretreatment on oil shale milling performance[J]. Energy Procedia, 2019, 158:1712-1717.
[100] Huang Y K, Zhang T A, Dou Z H, et al. Microwave strengthens decomposition of mixed rare earth concentrate:Microwave absorption characteristics[J]. Journal of Rare Earths, 2019, 37(5):541-546.
[101] Pietro P, Paolo R, Lorenzo B, et al. A review on the microwave heating as a sustainable technique for environmental remediation/detoxification applications[J]. Renewable and Sustainable Energy Reviews, 2018, 95:147-110.
[102] Batchelor A R, Ferrari-John R S, Katrib J, et al. Pilot scale microwave sorting of porphyry copper ores:Part 1-Laboratory investigations[J]. Minerals Engineering, 2016, 98:303-327.
[103] He Leping, Gu Yucheng, Hu Qijun, et al. Structural failure process of schistosity rock under microwave radiation at high temperatures[J]. Frattura ed Integrità Strutturale, 2019, 13(50):649-657.
[104] Wei W, Shao Z S, Zhang Y Y, et al. Fundamentals and applications of microwave energy in rock and concrete processing:A review[J]. Applied Thermal Engineering, 2019, 157:113751.
[1] 邓明科, 李琦琦, 马福栋, 黄政. 高延性混凝土加固RC梁抗剪性能试验研究[J]. 工程力学, 2020, 37(5): 55-63.
[2] 李杨, 任沛琪, 丁井臻, 李延涛, 邢万里, 宗金辉. 钢-混凝土双面组合作用梁基本力学性能试验研究与数值模拟[J]. 工程力学, 2020, 37(5): 82-93.
[3] 王斌, 孙勇峰, 霍光, 杨倩. 型钢混凝土框架柱等效塑性铰长度研究[J]. 工程力学, 2020, 37(5): 112-119.
[4] 金浏, 李平, 杜修力, 李冬. 箍筋约束混凝土圆柱轴压强度尺寸效应律[J]. 工程力学, 2020, 37(5): 64-73.
[5] 邓宗才, 姚军锁. 高强钢筋约束超高性能混凝土柱轴心受压本构模型研究[J]. 工程力学, 2020, 37(5): 120-128.
[6] 陈龙, 黄天立. 基于贝叶斯更新和逆高斯过程的在役钢筋混凝土桥梁构件可靠度动态预测方法[J]. 工程力学, 2020, 37(4): 186-195.
[7] 李钊, 宁建国, 马天宝, 许香照. 卵形弹侵彻混凝土靶的耦合侵蚀模型[J]. 工程力学, 2020, 37(4): 236-247.
[8] 王秋维, 刘乐, 史庆轩, 王朋. 钢管活性粉末混凝土界面粘结强度计算方法研究[J]. 工程力学, 2020, 37(4): 41-50.
[9] 徐龙河, 肖水晶. 内置碟簧自复位混凝土剪力墙基于性能的截面设计方法[J]. 工程力学, 2020, 37(4): 70-77,86.
[10] 吴从晓, 李定斌, 张骞, 吴从永, 邓雪松. PCF-MDC体系技术方案及抗震性能试验研究[J]. 工程力学, 2020, 37(4): 105-117.
[11] 时旭东, 李亚强, 李俊林, 汪文强, 钱磊. 不同超低温温度区间冻融循环作用混凝土受压强度试验研究[J]. 工程力学, 2020, 37(4): 153-164.
[12] 范重, 李媛媛, 李玮, 田玉基. 屈曲约束钢板剪力墙边框刚度影响研究[J]. 工程力学, 2020, 37(4): 30-40.
[13] 王斌, 史庆轩, 蔡文哲, 彭一功, 李涵. RC带翼缘剪力墙变形能力计算方法研究[J]. 工程力学, 2020, 37(3): 167-175,216.
[14] 金浏, 杨旺贤, 余文轩, 杜修力. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析[J]. 工程力学, 2020, 37(3): 56-65.
[15] 管俊峰, 宋志锴, 姚贤华, 陈珊珊, 袁鹏, 刘泽鹏. 采用无缝试件确定混凝土岩石的断裂韧度[J]. 工程力学, 2020, 37(3): 36-45,107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张世海;欧进萍;王光远. 基于实例基因库与遗传算法的高层结构智能选型知识发现[J]. 工程力学, 2006, 23(1): 87 -92 .
[2] 石文龙;李宏男;贾连光. 输电塔-导线耦联体系模型的振动台试验研究[J]. 工程力学, 2006, 23(5): 89 -93 .
[3] 程华;王仲刚;黄宗明;邓洪洲;张力. 基于非Gauss风载的高耸结构风振可靠性分析[J]. 工程力学, 2006, 23(7): 81 -86 .
[4] 于旭;刘伟庆. 新型方钢管混凝土柱-钢梁节点的受力机理分析[J]. 工程力学, 2006, 23(6): 114 -119 .
[5] 熊嘉阳;金学松. 铁路曲线钢轨横向凹坑对初始波磨形成的影响[J]. 工程力学, 2006, 23(6): 135 -141, .
[6] 袁 驷;肖 嘉;叶康生. 线法二阶常微分方程组有限元分析的EEP超收敛计算[J]. 工程力学, 2009, 26(11): 1 -009, .
[7] 李毅谦;向志海;岑章志. 关于悬臂梁振动特性的损伤灵敏度的研究[J]. 工程力学, 2009, 26(12): 17 -023 .
[8] 陈建国;夏 禾;陈树礼;苏木标. 运行列车引起的周围地面振动规律研究[J]. 工程力学, 2010, 27(1): 98 -103 .
[9] 孙作玉;王 晖;赵桂峰. 基于滚球隔震和换能控制的智能控制系统[J]. 工程力学, 2010, 27(1): 160 -164 .
[10] 王田友;丁洁民;楼梦麟. 地铁运行引起场地振动的荷载与分析方法[J]. 工程力学, 2010, 27(1): 195 -201 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日