工程力学 ›› 2020, Vol. 37 ›› Issue (5): 156-165.doi: 10.6052/j.issn.1000-4750.2019.07.0353

• 土木工程学科 • 上一篇    下一篇

循环温度作用下饱和黏土中摩擦型桩变形特性研究

陆浩杰1, 吴迪1, 孔纲强1,2, 刘汉龙1   

  1. 1. 重庆大学土木工程学院, 重庆 400045;
    2. 河海大学土木与交通学院, 江苏, 南京 210024
  • 收稿日期:2019-07-04 修回日期:2019-10-04 出版日期:2020-05-25 发布日期:2019-11-01
  • 通讯作者: 孔纲强(1982-),男,浙江人,教授,博士,博导,主要从事能源地下结构、透明土技术方面的教学与科研工作(E-mail:gqkong1@163.com). E-mail:gqkong1@163.com
  • 作者简介:陆浩杰(1995-),男,硕士生,主要从事能量桩技术与应用方面的研究工作(E-mail:haojie.lu@qq.com);吴迪(1990-),男,山东人,主要从事能量桩桩-土相互作用方面的研究(E-mail:wudi2009814@163.com);刘汉龙(1964-),男,江苏人,长江学者特聘教授,博士,博导,主要从事岩土工程方面的教学与科研(E-mail:hliuhhu@163.com).
  • 基金资助:
    国家自然科学基金项目(51778212)

DISPLACEMENT CHARACTERISTICS OF FRICTION PILES EMBEDDED IN SATURATED CLAY SUBJECTED TO THERMAL CYCLES

LU Hao-jie1, WU Di1, KONG Gang-qiang1,2, LIU Han-long1   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China;
    2. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210024, China
  • Received:2019-07-04 Revised:2019-10-04 Online:2020-05-25 Published:2019-11-01

摘要: 能量桩兼具支承上部荷载与能量交换的双重功能,循环温度作用下端承型桩的承载性能、摩擦型桩的变形问题是两大主要问题;目前针对长期循环温度作用下饱和黏土中摩擦型桩变形特性与机理的研究仍相对较少。该文针对饱和黏土中的摩擦型桩,开展了长期循环温度作用下桩基热响应特性模型试验研究,实测了桩/土温度分布、温度引起的桩周土体孔隙水压力以及桩顶变形等发展规律,初步探讨了桩顶累积沉降的产生机理与变化规律。研究结果表明:单次温度循环过程中,桩顶位移变化率在制热时略小于制冷时,桩顶位移变化率的差值随着循环次数的增加而逐渐减小,从而累积沉降也逐渐趋于稳定;该文试验条件下,经过长期(20次)温度循环,摩擦型桩的桩顶累积沉降逐渐稳定在2%DD为桩径)。

关键词: 能量桩, 饱和黏土, 温度循环, 变形特性, 模型试验

Abstract: Energy piles play a dual role in supporting the upper load and energy exchange. The bearing capacity of end-bearing piles and the deformation of friction piles under cyclic temperature are two major problems. However, there are few studies on the deformation characteristics and mechanism of friction piles in saturated clay under long-term cyclic temperature. In this study, a model test on the thermal response characteristics of a pile foundation under long-term cyclic temperature was carried out for friction piles in saturated clay. The development pattern of pile/soil temperature distribution, pore water pressure of soil surrounding the pile caused by temperature and the deformation of pile head were measured. The mechanism and variation of cumulative settlement of pile head were discussed. The results show that during a single thermal cycle, the displacement rate of the pile top under heating is slightly smaller than that of cooling. The difference in the displacement rate of the pile head between heating and cooling gradually decreases with the increase in the number of temperature cycles. Therefore, the cumulative settlement gradually stabilizes. Under the conditions of this study and long-term (20 times) cyclic temperature, the cumulative head settlement of the friction pile gradually stabilized at 2%D (D is the pile diameter).

Key words: energy pile, saturated clay, thermal cycles, displacement characteristics, model test

中图分类号: 

  • TU473.1
[1] Brandl H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2):81-122.
[2] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1):176-181. Liu Hanlong, Kong Gangqiang, Charles W W NG. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical, 2014, 36(1):176-181.(in Chinese)
[3] Laloui L, Nuth M, Vulliet L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8):763-781.
[4] Bourne-Webb P J, Amatya B, Soga K, et al. Energy pile test at Lambeth College, London:geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3):237-248.
[5] Wang B, Bouazza A, Singh R M, et al. Posttemperature effects on shaft capacity of a full-scale geothermal energy pile[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 141(4):04014125-1-04014125-12.
[6] Goode Iii J C, McCartney J S. Centrifuge modeling of end-restraint effects in energy foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(8):04015034-1-04015034-13.
[7] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36:1087-1094. Gui Shuqiang, Cheng Xiaohui. In-situ test for structural responses of energy pile to heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6):1087-1094. (in Chinese)
[8] You S, Cheng X, Guo H, et al. Experimental study on structural response of CFG energy piles[J]. Applied Thermal Engineering, 2016, 96:640-651.
[9] Rotta Loria A F, Laloui L. Thermally induced group effects among energy piles[J]. Géotechnique, 2016, 67(5):374-393.
[10] Abdelaziz S, Ozudogru T Y. Non-uniform thermal strains and stresses in energy piles[J]. Environmental Geotechnics, 2016, 3(4):237-252.
[11] Yavari N, Tang A M, Pereira J M, et al. Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling[J]. Acta Geotechnica, 2014, 9(3):385-398.
[12] 王成龙, 刘汉龙, 孔纲强, 等. 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(1):85-91. Wang Chenglong, Liu Hanlong, Kong Gangqiang, et al. Model tests on thermal mechanical behavior of energy piles influenced with heat exchangers types[J]. Energy Mechanics, 2017, 34(1):85-91. (in Chinese)
[13] Olgun C G, Ozudogru T Y, Abdelaziz S L, et al. Long-term performance of heat exchanger piles[J]. Acta Geotechnica, 2015, 10(5):553-569.
[14] Ng C W W, Gunawan A, Shi C, et al. Centrifuge modelling of displacement and replacement energy piles constructed in saturated sand:A comparative study[J]. Géotechnique Letters, 2016, 6(1):34-38.
[15] Nguyen V T, Tang A M, Pereira J M. Long-term thermo-mechanical behavior of energy pile in dry sand[J]. Acta Geotechnica, 2017, 12(4):729-737.
[16] Abuel-Naga H M, Bergado D T, Lim B F. Effect of temperature on shear strength and yielding behavior of soft Bangkok clay[J]. Soils and Foundations, 2007, 47(3):423-436.
[17] Ng C W W, Shi C, Gunawan A, et al. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay[J]. Geotechnique Letters, 2014, 4(4):310-316.
[18] Stewart M A, McCartney J S. Centrifuge modeling of soil-structure interaction in energy foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(4):04013044-1-04013044-11.
[19] Yavari N, Tang A M, Pereira J M, et al. Mechanical behaviour of a small-scale energy pile in saturated clay[J]. Géotechnique, 2016, 66(11):878-887.
[20] Wu D, Liu H L, Kong G Q, et al. Displacement response of an energy pile in saturated clay[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2018, 171(4):285-294.
[21] Franco A, Moffat R, Toledo M, et al. Numerical sensitivity analysis of thermal response tests (TRT) in energypiles[J]. Renewable Energy, 2016, 86:985-992.
[22] Gao J, Zhang X, Liu J, et al. Numerical and experimental assessment of thermal performance of vertical energy piles:An application[J]. Applied Energy, 2008, 85(10):901-910.
[23] Chen Y, Xu J, Li H, et al. Performance of a prestressed concrete pipe energy pile during heating and cooling[J]. Journal of Performance of Constructed Facilities, 2017, 31(3):6017001.
[24] Faizal M, Bouazza A, Haberfield C, et al. Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(10):04018072-1-04018072-14.
[25] McCartney J S, Murphy K D. Strain distributions in full-scale energy foundations (DFI Young Professor Paper Competition 2012)[J]. DFI Journal-the Journal of the Deep Foundations Institute, 2012, 6(2):26-38.
[26] 路宏伟, 蒋刚, 王昊, 等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2):334-342. Lu Hongwei, Jiang Gang, Wang Hao, et al. In situ tests and analysis of mechanical-thermo bearing characteristic of drilled friction geothermal energy pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2):334-342. (in Chinese)
[27] Kramer C A, Ghasemi-Fare O, Basu P. Laboratory thermal performance tests on a model heat exchanger pile in sand[J]. Geotechnical and Geological Engineering, 2015, 33(2):253-271.
[28] Zeng L L, Hong Z S, Cai Y Q, et al. Change of hydraulic conductivity during compression of undisturbed and remolded clays[J]. Applied Clay Science, 2011, 51(1/2):86-93.
[29] Alonso E E, Gens A, Lloret A. Precompression design for secondary settlement reduction[J]. Geotechnique, 2000, 50(6):645-656.
[30] Abuel-naga H M, Bergado D T, Bouazza A. Thermally induced volume change and excess pore water pressure of soft Bangkok clay[J]. Engineering Geology, 2007, 89(1):144-154.
[31] Campanella R G, Mitchell J K. Influence of temperature variations on soil behavior[J]. Journal of Soil Mechanics & Foundations Div, 1968, 94:709-734.
[32] Cekerevac C, Laloui L. Experimental study of thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(3):209-228.
[33] Pasten C, Santamarina J C. Thermally induced long-term displacement of thermoactive piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5):06014003-1-06014003-5.
[34] Chin J T, Poulus H G. A "T-Z" approach for cyclic axial loading analysis of single piles[J]. Computers and Geotechnics, 1991, 12(4):289-320.
[1] 田英鹏, 徐丹, 周惠蒙, 王涛. 对风力发电机塔架施工阶段TMD阻尼器的研究[J]. 工程力学, 2019, 36(S1): 184-188.
[2] 王怀亮. 钢纤维高性能轻骨料混凝土多轴强度和变形特性研究[J]. 工程力学, 2019, 36(8): 122-132.
[3] 梁东, 金浩, 肖军华, 周顺华. 软土地区侧压损失对盾构隧道受力及变形的影响[J]. 工程力学, 2019, 36(5): 148-156,175.
[4] 齐春, 何川, 封坤, 彭祖昭, 汤印, 代聪. 深部复合地层管片衬砌与可压缩层联合支护技术研究[J]. 工程力学, 2019, 36(4): 62-71,99.
[5] 陈海, 郭子雄, 刘阳, 郭利涛. 新型组合剪力键抗剪机理及承载力计算方法研究[J]. 工程力学, 2019, 36(3): 159-168.
[6] 邹佑学, 王睿, 张建民. 碎石桩加固可液化场地数值模拟与分析[J]. 工程力学, 2019, 36(10): 152-163.
[7] 张陆陈, 王余杰, 骆少泽. 射流簇底流消能旋涡区脉动压力特性研究[J]. 工程力学, 2018, 35(S1): 355-358.
[8] 石吉森, 凌道盛, 徐泽龙, 黄博. 倾斜场地中逆断层错动对上覆土体影响的模型试验研究[J]. 工程力学, 2018, 35(7): 194-207.
[9] 范重, 刘云博, 王祥臻, 吴徽, 王义华. 连梁骨架曲线与滞回特性研究[J]. 工程力学, 2018, 35(6): 68-77,87.
[10] 陈庆发, 赵富裕, 陈青林, 王玉丁. 基于室内模型试验的多漏斗同步放矿柔性隔离层材料受力特性分析[J]. 工程力学, 2018, 35(11): 240-248.
[11] 黄明, 付俊杰, 陈福全, 江松. 桩端岩溶顶板的破坏特征试验与理论计算模型研究[J]. 工程力学, 2018, 35(10): 172-182.
[12] 苏庆田, 林航, 杜霄, 曾明根. 波形钢腹板导梁局部承压的加强构造与试验[J]. 工程力学, 2017, 34(增刊): 78-83.
[13] 乔朋, 狄谨, 秦凤江. 单箱多室波形钢腹板组合箱梁的腹板剪应力分析[J]. 工程力学, 2017, 34(7): 97-107.
[14] 江学良, 牛家永, 连鹏远, 文畅平, 王飞飞. 含小净距隧道岩石边坡地震动力特性的大型振动台试验研究[J]. 工程力学, 2017, 34(5): 132-141,147.
[15] 王成龙, 刘汉龙, 孔纲强, 吴迪. 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(1): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[2] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
[3] 陈国栋;韩 旭;刘桂萍. 一种基于近似模型管理的多目标优化方法[J]. 工程力学, 2010, 27(5): 205 -209, .
[4] 葛继平;王志强. 干接缝节段拼装桥墩集中塑性铰模型的地震响应分析[J]. 工程力学, 2010, 27(8): 185 -190 .
[5] 李全旺;樊健生;聂建国. 地震动方向随机性对结构动力反应的影响[J]. 工程力学, 2010, 27(12): 135 -140 .
[6] 魏永祥;陈建军;王敏娟. 随机参数齿轮-转子系统扭转振动固有频率分析[J]. 工程力学, 2011, 28(4): 172 -177 .
[7] 魏 凯;伍勇吉;徐 灿;庞于涛;袁万城. 桥梁群桩基础-水耦合系统动力特性数值模拟[J]. 工程力学, 2011, 28(增刊I): 195 -200 .
[8] 白兴兰;黄维平;高若沉. 海床土刚度对钢悬链线立管触地点动力响应的影响分析[J]. 工程力学, 2011, 28(增刊I): 211 -216 .
[9] 陈 逵;刘哲锋;沈蒲生. 基于瞬时输入能量时变特征的SDOF体系位移历程模拟[J]. 工程力学, 2011, 28(9): 66 -071, .
[10] 王长国;;杜星文;赫晓东. 充气薄膜管的弯皱行为分析[J]. 工程力学, 2009, 26(2): 210 -215 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日