工程力学 ›› 2020, Vol. 37 ›› Issue (5): 166-177.doi: 10.6052/j.issn.1000-4750.2019.07.0363

• 土木工程学科 • 上一篇    下一篇

地震波斜入射下层状TI饱和场地地震反应分析

巴振宁1,2,3, 张家玮1,3, 梁建文1,2,3, 吴孟桃1,3   

  1. 1. 中国地震局地震工程综合模拟与城乡抗震韧性重点实验室(天津大学), 天津 300350;
    2. 滨海土木工程结构与安全教育部重点实验室, 天津 300350;
    3. 天津大学土木工程系, 天津 300350
  • 收稿日期:2019-07-11 修回日期:2019-11-26 出版日期:2020-05-25 发布日期:2020-04-17
  • 通讯作者: 吴孟桃(1993-),男,四川人,博士生,主要从事地震工程研究(E-mail:wumengtao@tju.edu.cn). E-mail:wumengtao@tju.edu.cn
  • 作者简介:巴振宁(1980-),男,山东人,教授,博士,博导,主要从事地震工程研究(E-mail:bazhenning_001@163.com);张家玮(1996-),男(满族),天津人,硕士,主要从事地震工程研究(E-mail:2522255767@qq.com);梁建文(1965-),男,河北人,教授,博士,博导,主要从事地震工程研究(E-mail:liang@tju.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578373,51578372,51778413)

SEISMIC RESPONSE ANALYSIS OF MULTI-LAYERED TI SATURATED SITE SUBJECTED TO OBLIQUE INCIDENT SEISMIC WAVE

BA Zhen-ning1,2,3, ZHANG Jia-wei1,3, LIANG Jian-wen1,2,3, WU Meng-tao1,3   

  1. 1. Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China Earthquake Administration(Tianjin University), Tianjin 300350, China;
    2. Key Laboratory of Coast Civil Structure Safety, Ministry of Education, Tianjin 300350, China;
    3. Department of Civil Engineering, Tianjin University, Tianjin 300350, China
  • Received:2019-07-11 Revised:2019-11-26 Online:2020-05-25 Published:2020-04-17

摘要: 滨海地区的天然土体在长期的风化和沉积作用下,其水平模量往往会大于其竖向模量,表现出明显的横观各向同性(TI)饱和特性,目前还很少有针对地震波斜入射下TI饱和场地动力响应问题的研究。将HaskellThomson传递矩阵方法拓展到层状TI饱和半空间,求解了直角坐标系下两相介质的Biot动力平衡方程及孔隙流体运动方程,建立了层状TI饱和半空间传递矩阵,并结合地表边界条件求解了地震波斜入射下层状TI饱和场地自由场的时域反应。该文验证了提出方法的正确性,进而以CNTEWGXE波(0.3 g)作为输入地震动,研究了土体TI性质及饱和特性对场地加速度时程及反应谱的影响。结果表明:层状TI饱和场地和各向同性饱和场地地表的动力响应存在一定差异,TI参数的改变使得场地对地震波产生不同的滤波和放大效应;场地的饱和特性对地表的动力响应有重要影响,饱和多孔介质固液耦合作用对地震波具有削弱作用;地震波斜入射时地表加速度时程及反应谱响应小于其垂直入射时的响应,且入射角度对qP1波入射时的场地影响更明显。

关键词: 自由场, 横观各向同性, 饱和多孔介质, 传递矩阵, 斜入射, 层状场地

Abstract: Under long-term weathering and deposition, the horizontal modulus of natural soil in coastal areas is often greater than its vertical modulus, showing obvious transverse isotropic (TI) saturation characteristics. However, there are few studies on the dynamic response of TI saturated site. Haskell-Thomson transfer matrix method is extended to a layered TI saturated half space. First, Biot dynamic equilibrium equation and the pore fluid motion equation of two-phase medium in a rectangular coordinate system are solved. Then a layered TI saturated half-space transfer matrix is established. Finally, the time domain response of the free field of a layered TI saturated site under the oblique incidence of seismic waves is solved in combination with surface boundary conditions. The paper verifies the correctness of the proposed method, and then takes CNTWGXE wave (0.3 g) as input ground motion to study the influence of soil TI properties and saturation characteristics on the acceleration time history and the response spectrum of the site. Analytical results show that:the dynamic response of the layered TI saturated site and that of the isotropic saturated site are different, and changes in TI parameters cause the site to have different filtering and amplification effects on seismic waves. The saturation characteristics of the site have an important influence on the dynamic response of the surface, and the solid-liquid coupling of saturated porous media has a weakening effect on seismic wave. The peak values of surface acceleration and response spectrum are less than those of the oblique incidence, and the incident angle has more obvious impact on the site for qP1 wave.

Key words: free field, transversely isotropic, saturated porous medium, transfer matrix, oblique incidence, layered site

中图分类号: 

  • TU435
[1] Fu J, Liang J W, Todorovska M I, et al. Soil-structure system frequency and damping:estimation from eigenvalues and results for a 2D model in layered half-space[J]. Earthquake Engineering and Structural Dynamics, 2018, 47:2055-2075.
[2] Lu X, Tian Y, Wang G, et al. A numerical coupling scheme for nonlinear time history analysis of buildings on a regional scale considering site-city interaction effects[J]. Earthquake Engineering & Structural Dynamics, 2018, 47(13):2708-2725.
[3] Haskell N A. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 1953, 43(1):86-103.
[4] Thomson W T. Transmission of elastic waves through a stratified soil medium[J]. Journal of Applied Physics, 1950, 21(2):89-93.
[5] Kausel E, Roësset J M. Stiffness matrices for layered soils[J]. Bulletin of the Seismological Society of America, 1981:1743-1761.
[6] Wolf J P, Obernhuber P. Free-field response from inclined SH-waves and Love-waves[J]. Earthquake Engineering and Structural Dynamics, 1982, 10(6):823-845.
[7] 于国友, 何玉敖, 梁建文. 层状半空间场地对地震波的放大作用[J]. 天津大学学报, 1993(4):79-85. Yu Guoyou, He Yuao, Liang Jianwen. Amplification of layered soil to seismic waves[J]. Journal of Tianjin University, 1993(4):79-85. (in Chinese)
[8] 梁建文, 巴振宁. 三维层状场地的精确动力刚度矩阵及格林函数[J]. 地震工程与工程振动, 2007(5):7-17. Liang Jianwen, Ba Zhenning. Exact dynamic stiffness matrices of 3-D layered site and its Green's functions[J]. Journal of Earthquake Engineering and Engineering Vibration, 2007(5):7-17. (in Chinese)
[9] Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid-filled porous solid:III. Reflection of plane waves at a free plane boundary (general case)[J]. Bulletin of the Seismological Society of America, 1962, 52(3):595-625.
[10] Deresiewicz H. The effect of boundaries on wave proagation in a liquid-filled porous solid:VII. Surface waves in a half-space in the presence of a liquid layer[J]. Bulletin of the Seismological Society of America, 1964, 54(1):425-430.
[11] Yang J, Sato T. Interpretation of seismic vertical amplification at an array site[J]. Bulletin of the Seismological Society of America, 2000, 90(2):275-284.
[12] Lin C H. Wave propagation in a poroelastic half-space saturated with inviscid fluid[D]. Los Angeles:University of Southern California, 2002.
[13] 李伟华, 赵成刚, 杜楠馨. 软弱饱和土夹层对地铁车站地震响应的影响分析[J]. 岩土力学, 2010, 31(12):3958-3963, 3970. Li Weihua, Zhao Chenggang, Du Nanxin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. Rock and Soil Mechanics, 2010, 31(12):3958-3963, 3970. (in Chinese)
[14] 巴振宁, 梁建文. 流体饱和半空间中埋置球面P1, P2和SV波源动力格林函数[J]. 工程力学, 2016, 33(5):34-43. Ba Zhenning, Liang Jianwen. Dynamic Green's functions of spherical P1, P2 and SV sources embedded in a watersaturated half-space[J]. Engineering Mechanics, 2016, 33(5):34-43. (in Chinese)
[15] 陈镕, 陈竹昌, 薛松涛, 等. 横观各向同性层状场地对入射SH波的响应分析[J]. 上海力学, 1998(3):213-220. Chen Rong, Chen Zhuchang, Xue Songtao, et al. The response analysis of transversely isotropic elastic strata to incident SH waves[J]. Shanghai Journal of Mechanics, 1998(3):213-220. (in Chinese)
[16] 薛松涛, 陈镕, 秦岭, 等. 横观各向同性层状场地的动力边界条件[J]. 岩石力学与工程学报, 2001, 20(1):65-69. Xue Songtao, Chen Rong, Qin Ling, et al. The dynamic boundary conditions of transversely isotropic stratIfied media[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(1):65-69. (in Chinese)
[17] Schmitt D P. Acoustic multipole logging in transversely isotropic poroelastic formations[J]. Journal of the Acoustical Society of America, 1989, 86(6):2397-2421.
[18] Sharma M D. Wave propagation in anisotropic liquid-saturated porous solids[J]. Acoustical Society of America Journal, 1991, 90(2):1068-1073.
[19] Liu Y, Liu K, Tanimura S. Wave propagation in transversely isotropic fluid-saturated poroelastic media[J]. Jsme International Journal, 2002, 45(3):348-355.
[20] 陈胜立, 张建民. 横观各向同性饱和地基轴对称Biot固结问题的解析解[J]. 岩土工程学报, 2002(1):26-30. Chen Shengli, Zhang Jianmin. An analysis of axisymmetric consolidation for transversely isotropic saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002(1):26-30. (in Chinese)
[21] 陆建飞, 周慧明, 刘洋. 横观各向同性层状饱和土动力问题的反射、透射矩阵方法[J]. 岩土力学, 2018, 39(6):2219-2225. Lu Jianfei, Zhou Huiming, Liu Yang. Reflection transmission matrix method for dynamic response of transversely isotropic multilayered saturated soil[J]. Rock and Soil Mechanics, 2018, 39(6):2219-2225. (in Chinese)
[22] Biot M A. Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range[J]. Journal of the Acoustical Society of America, 1956, 28:168-178.
[23] Ba Z, Liang J. Fundamental solutions of a multi-layered transversely isotropic saturated half-space subjected to moving point forces and pore pressure[J]. Engineering Analysis with Boundary Elements, 2017, 76:40-58.
[24] 宋佳, 许成顺, 杜修力, 等. 基于精细时程积分的u-p格式饱和两相介质动力问题的显-显式时域算法[J]. 工程力学, 2017, 34(11):9-17. Song Jia, Xu Chengshun, Du Xiuli, et al. A temporal explicit-explicit algorithm based on the precise time-integration for solving the dynamic problems of fluid-saturated porous media in u-p form[J]. Engineering Mechanics, 2017, 34(11):9-17. (in Chinese)
[25] 李志远, 李建波, 林皋, 等. 饱和层状地基条形基础动刚度的精细积分算法[J]. 工程力学, 2018, 35(6):15-23. Li Zhiyuan, Li Jianbo, Lin Gao, et al. Precise integration method for dynamic stiffness of strip foundation on saturated poroelastic soil[J]. Engineering Mechanics, 2018, 35(6):15-23. (in Chinese)
[26] Wolf J P. Dynamic soil-structure interaction[M]. Englewood Cliffs:Prentice Hall, 1985.
[27] 梁建文, 潘坤, 巴振宁. 层状横观各向同性场地地震反应分析[J]. 地震工程与工程振动, 2017, 37(4):1-14. Liang Jianwen, Pan Kun, Ba Zhenning. Seismic response analysis of a multi-layered transversely isotropic half space[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(4):1-14. (in Chinese)
[28] 刘方成, 姚玉文, 吴孟桃, 等. 橡胶砂垫层在不同类别场地上的减震效应研究[J]. 地震工程与工程振动, 2019, 39(1):128-137. Liu Fangcheng, Yao Yuwen, Wu Mengtao, et al. Isolating effects of rubber sand mixture cushion at different categorIzed sites[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1):128-137. (in Chinese)
[1] 赵密, 孙文达, 高志懂, 黄景琦, 杜修力. 阶梯地形成层场地的斜入射地震动输入方法[J]. 工程力学, 2019, 36(12): 62-68.
[2] 张奎, 夏佩林, 李伟华, 赵成刚. 斜入射下水下地基场地地震输入的一维化时域方法[J]. 工程力学, 2019, 36(11): 91-101.
[3] 竺明星, 龚维明, 卢红前, 王磊. 考虑侧阻与端阻影响的基桩水平承载力传递矩阵解[J]. 工程力学, 2018, 35(S1): 230-238.
[4] 巴振宁, 严洋, 梁建文, 张艳菊. 基于TI介质模型的凸起地形对平面SH波的放大作用[J]. 工程力学, 2017, 34(8): 10-24.
[5] 杜修力, 李洋, 赵密, 许成顺, 路德春. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学, 2017, 34(5): 52-59.
[6] 王笃国, 赵成刚. 地震波斜入射下考虑场地非线性、地形效应和土结动力相互作用的大跨连续刚构桥地震响应分析[J]. 工程力学, 2017, 34(4): 32-41.
[7] 甄晓霞, 张卓杰, 王荣辉, 李周. 层间滑移对摩擦型叠梁弯曲特性的影响[J]. 工程力学, 2016, 33(8): 185-193.
[8] 张季, 梁建文, 巴振宁. 水平层状饱和场地地震响应分析的等效线性化方法[J]. 工程力学, 2016, 33(10): 52-61.
[9] 杨骁,蒋志云,张敏. 爆炸荷载作用下深埋圆形隧洞饱和土-衬砌系统的动力响应[J]. 工程力学, 2015, 32(5): 138-146.
[10] 袁勇,申中原,禹海涛. 沉管隧道纵向地震响应分析的多体动力学方法[J]. 工程力学, 2015, 32(5): 76-83.
[11] 周凤玺,马强,宋瑞霞. 含液饱和多孔二维梁的动力特性分析[J]. 工程力学, 2015, 32(5): 198-207.
[12] 赵福垚, 宋二祥. 有限一维弹性波动问题的公理化求解及其在自由场中的应用[J]. 工程力学, 2015, 32(4): 47-53.
[13] 何卫平,何蕴龙. 基于两向设计地震动的二维自由场构建[J]. 工程力学, 2015, 32(2): 31-36,44.
[14] 张卫东, 常龙, 高佳佳. 横观各向同性地层井壁应力分析[J]. 工程力学, 2015, 32(11): 243-250.
[15] 张赣波, 赵耀, 胡昌成. 舰船轴系纵向减振用共振转换器的滤波特性分析[J]. 工程力学, 2014, 31(增刊): 231-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原 园;徐颖强;吕国志;朱贤飞. 齿轮啮合过程中安定状态残余应力的数值方法研究[J]. 工程力学, 2008, 25(10): 0 -211, .
[2] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[3] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[4] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[5] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[6] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[7] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
[8] 吴琛;周瑞忠. 小波基无单元法及其与有限元法的比较[J]. 工程力学, 2006, 23(4): 28 -32 .
[9] 黄煜镔;钱觉时;周小平. 基于强度尺寸效应的准脆性材料脆性指标研究[J]. 工程力学, 2006, 23(1): 38 -42,5 .
[10] 罗冠炜;张艳龙;谢建华. 多自由度含间隙振动系统周期运动的二重Hopf分岔[J]. 工程力学, 2006, 23(3): 37 -43,6 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日