工程力学 ›› 2020, Vol. 37 ›› Issue (5): 178-189.doi: 10.6052/j.issn.1000-4750.2019.07.0380

• 土木工程学科 • 上一篇    下一篇

装配整体式网格剪力墙压弯承载力计算方法

李斌1, 黄炜2   

  1. 1. 西安工程大学城市规划与市政工程学院, 西安 710600;
    2. 西安建筑科技大学土木工程学院, 西安 710055
  • 收稿日期:2019-07-18 修回日期:2019-11-22 出版日期:2020-05-25 发布日期:2019-12-06
  • 通讯作者: 李斌(1991-),男,陕西西安人,讲师,博士,主要从事装配式混凝土结构抗震性能研究(E-mail:li_bin2018@163.com). E-mail:li_bin2018@163.com
  • 作者简介:黄炜(1976-),男,陕西西安人,教授,博士,主要从事新型装配式结构体系研究(E-mail:qqhuangwei2005@163.com).
  • 基金资助:
    国家自然科学基金项目(51578446);陕西省住房城乡建设科技科研开发计划项目(2015-K143)

THE COMPRESSION-BENDING CAPACITY CALCULATION OF MONOLITHIC PRECAST GRID SHEAR WALL

LI Bin1, HUANG Wei2   

  1. 1. School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710600, China;
    2. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Received:2019-07-18 Revised:2019-11-22 Online:2020-05-25 Published:2019-12-06

摘要: 通过6榀装配整体式网格剪力墙试件的低周反复荷载试验,研究了预制墙板竖向钢筋连接方式、竖向接缝形式,布筋方式对墙体抗震性能及压弯承载力的影响,试验结果表明:6榀墙体均发生以竖向边缘构架破坏为主的弯曲型破坏;预制墙板竖向钢筋采用预埋件焊接时,能有效提升墙体的承载力;预制墙板竖向接缝形式对墙体的承载力影响不大;井字形布筋墙体的承载力及延性略大于其他类型布筋墙体。基于平截面假定,充分考虑预制墙板可靠连接钢筋作用,忽略未连接钢筋作用,建立墙体在开裂、屈服、峰值、极限状态弯矩-曲率计算方法,并对影响其各阶段承载力计算公式的因素进行分析。结果表明,所建立的弯矩-曲率计算公式能较为准确地描述装配整体式网格剪力墙各阶段的荷载-变形关系,计算值与试验结果吻合较好。

关键词: 装配整体式网格剪力墙, 低周反复荷载试验, 弯曲破坏, 压弯承载力, 弯矩-曲率

Abstract: The cyclic loading test of 6 specimens of monolithic precast grid shear wall was conducted, and the influence of vertical reinforcement splicing in a precast panel, of vertical joints connection form, and of reinforcement pattern of a precast panel on seismic performance and bending capacity of walls was studied. The test shows that 6 specimens suffered from bending failure mainly due to the failure of vertical edge frame. The bearing capacity could be effectively improved, when the vertical reinforcement of a precast panel was welded with embedded parts. The vertical joints connection form had little effect on the bearing capacity of specimens. The bearing capacity and ductility of well-shaped reinforced wall were slightly larger than those of other types of reinforced wall. Based on the assumption of plane section, a calculation method for moment-curvature in cracking, yielding, peak, and ultimate state of walls was established, taking fully into account the role of reliable connecting steel bars in a precast panel and ignoring the role of unrelated steel bars, and the main factors influencing the calculation formula of bearing capacity of walls at different states were discussed. It is shown that the proposed moment-curvature calculation method can be used to predict the load-deformation relationship of monolithic precast grid shear walls accurately. The calculated values were in a good agreement with the experimental results.

Key words: monolithic precast grid shear wall, cyclic loading test, bending failure, compression-bending capacity, moment-curvature

中图分类号: 

  • TU398.2
[1] Olivia M, Clough R, Malhas F. Seismic behavior of large panel precast concrete walls:analysis and experiment[J]. PCI J, 1989, 34(5):42-66.
[2] Hutchinson R, Rizkalla S, Lau M, Heuvle S. Horizontal post-tensioned connections for precast concrete loadbearing shear wall panels[J]. PCI J, 1991, 36(6):64-76.
[3] Su-Min Kang, Ook-Jong Kim, Hong-Gun Park. Cyclic loading test for emulative precast concrete walls with partially reduced rebar section[J]. Engineering Structures, 2013, 56:1645-1657.
[4] Peng Yuanyuan, Qian Jiayu, Wang Yuhang. Cyclic performance of precast concrete shear walls with a mortar sleeve connection for longitudinal steel bars[J]. Materials and Structures, 2016, 49:2455-2469.
[5] Xu Guoshan, Wang Zhen, Wu Bin, et al. Seismic performance of precast shear wall with sleeves connection based on experimental and numerical studies[J]. Engineering Structures, 2017, 150:346-358.
[6] Zhi Qing, Guo Zhengxing, Xiao Quandong, et al. Quasi-static test and strut-and-tie modeling of precast concrete shear walls with grouted lap-spliced connections[J]. Construction and Building Materials, 2017, 150:190-203.
[7] 李刚, 黄小坤, 刘瑄, 等. 底部预留后浇区钢筋搭接的装配整体式剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(5):193-200. Li Gang, Huang Xiaokun, Liu Xuan, et al. Experimental study on seismic behavior of monolithic precast concrete shear wall with rebar overlapped in pre-reserved area for subsequent concrete casting[J]. Journal of Building Structures, 2016, 37(5):193-200. (in Chinese)
[8] 赵海龙, 郭璐琪, 王铁成, 等. 一种装配整体式混凝土剪力墙的抗震性能试验[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(3):249-256. Zhao Hailong, Guo Luqi, Wang Tiecheng, et al. Test on seismic performance of an assembled monolithic concrete shear wall[J]. Journal of Tianjin University (Science and Technology), 2018, 51(3):249-256. (in Chinese)
[9] 王啸霆, 王涛, 李文峰, 等. 装配整体式钢筋混凝土剪力墙子结构抗震性能试验研究[J]. 建筑结构学报, 2017, 38(6):1-11. Wang Xiaoting, Wang Tao, Li Wenfeng, et al. Experimental study on seismic behavior of monolithic precast reinforced concrete shear wall substructure[J]. Journal of Building Structures, 2017, 38(6):1-11. (in Chinese)
[10] 初明进, 刘继良, 崔会趁, 等. 装配整体式双向孔空心模板剪力墙受剪性能试验研究[J]. 工程力学, 2013, 30(7):219-229. Chu Mingjing, Liu Jiliang, Cui Huichen, et al. Experimental study on shear behaviors of assembled monolithic concrete shear walls built with precast two-way hollow slabs[J]. Engineering Mechanics, 2013, 30(7):219-229. (in Chinese)
[11] 吴东岳, 梁书亭, 郭正兴, 等. 改进型钢筋浆锚装配式剪力墙压弯承载力计算[J]. 哈尔滨工业大学学报, 2015, 47(12):112-116. Wu Dongyue, Liang Shuting, Guo Zhengxing, et al. Bending bearing capacity calculation of the improved steel grouted connecting precast wall[J]. Journal of Harbin institute of technology, 2015, 47(12):112-116. (in Chinese)
[12] 黄炜, 张敏, 江永涛, 等. 装配式混凝土墙抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10):88-95. Huang Wei, Zhang Min, Jiang Yongtao, et al. Experimental study on seismic behavior of precast concrete walls[J]. Journal of Building Structures, 2015, 36(10):88-95. (in Chinese)
[13] Huang Wei, Zhang Min, Yang Zengke. A comparative study on seismic performance of precast shear walls designed with different variables[J]. KSCE Journal of Civil Engineering, 2018, 22(12):4955-4963.
[14] Vu N S, Yu B, Li B. Stress-strain model for confined concrete with corroded transverse reinforcement[J]. Engineering Structures, 2017, 151:472-487.
[15] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9):135-144. Yu Bo, Tao Boxiong, Liu Shengbin. A probabilistic model for peak stress of concrete confined ties[J]. Engineering Mechanics, 2018, 35(9):135-144. (in Chinese)
[16] 钱稼茹, 魏勇, 赵作周, 等. 高轴压比钢骨混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2008, 29(2):43-50. Qian Jiaru, Wei Yong, Zhao Zuozhou, et al. Experimental study on seismic behavior of SRC shear walls with high axial force ratio[J]. Journal of Building Structures, 2008, 29(2):43-50. (in Chinese)
[17] 党争, 梁兴文, 邓明科, 等. 局部采用纤维增强混凝土剪力墙压弯性能研究[J]. 工程力学, 2015, 32(2):120-130. Dang Zheng, Liang Xingwen, Deng Mingke, et al. The compression-bending behavior of shear wall with fiber-reinforced concrete in bottom region[J]. Engineering Mechanics, 2015, 32(2):120-130.(in Chinese)
[18] 白亮, 谢鹏飞, 周天华, 等. 钢管约束高强混凝土剪力墙压弯承载力及截面变形能力设计方法研究[J]. 工程力学, 2017, 34(11):175-183. Bai Liang, Xie Pengfei, Zhou Tianhua, et al. Study on design method of axial force-moment capacity and sectional deformation capacity of steel tube confined high-strength concrete shear walls[J]. Engineering Mechanics, 2017, 34(11):175-183. (in Chinese)
[19] 史庆轩, 王南, 王秋维, 等. 高强箍筋约束高强混凝土轴心受压本构关系研究[J]. 工程力学, 2013, 30(5):131-137. Shi Qingxuan, Wang Nan, Wang Qiuwei, et al. Uniaxial compressive stress-strain model for high-strength concrete confined with high-strength lateral ties[J]. Engineering Mechanics, 2013, 30(5):131-137.(in Chinese)
[20] Mander J B, Priestley M J N, Park R. Theoretical stress strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[21] 杨坤, 史庆轩, 赵均海, 等. 高强箍筋约束高强混凝土本构模型研究[J]. 土木工程学报, 2013, 46(1):34-41. Yang Kun, Shi Qingxuan, Zhao Junhai, et al. Study on the constitutive model of high-strength concrete confined by high-strength stirrups[J]. China Civil Engineering Journal, 2013, 46(1):34-41. (in Chinese)
[22] 马恺泽, 梁兴文, 李响, 等. 型钢混凝土剪力墙恢复力模型研究[J]. 工程力学, 2011, 28(8):119-126. Ma Kaize, Liang Xingwen, Li Xiang, et al. Restoring force model of steel reinforced concrete shear walls[J]. Engineering Mechanics, 2011, 28(8):119-126. (in Chinese)
[23] Feng Peng, Cheng Shi, Bai Yu, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression[J]. Composite Structures, 2015, 123:312-324.
[24] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3):36-46. Feng Peng, Qiang Hanlin, Ye Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3):36-46. (in Chinese)
[1] 王斌, 史庆轩, 蔡文哲. 带翼缘剪力墙截面曲率分析及延性的计算[J]. 工程力学, 2019, 36(12): 165-176.
[2] 代桂霞, 鲁亮, 潘陵娣. 预制钢筋混凝土叠合剪力墙抗震性能试验研究[J]. 工程力学, 2017, 34(增刊): 202-209.
[3] 白亮, 谢鹏飞, 周天华, 张轶. 钢管约束高强混凝土剪力墙压弯承载力及截面变形能力设计方法研究[J]. 工程力学, 2017, 34(11): 175-183.
[4] 张建伟, 杨兴民, 曹万林, 胡剑民. 带斜筋单排配筋低矮剪力墙的抗震性能[J]. 工程力学, 2016, 33(增刊): 125-132.
[5] 党争,梁兴文,邓明科,王晶,秦萌,于婧. 局部采用纤维增强混凝土剪力墙压弯性能研究[J]. 工程力学, 2015, 32(2): 120-130.
[6] 侯和涛, 邱灿星, 李国强, 王静峰. 带节能复合墙板钢框架低周反复荷载试验研究[J]. 工程力学, 2012, 29(9): 177-184,192.
[7] 林倩, 邓志恒, 刘其舟. 足尺钢桁架连梁抗震性能试验研究及非线性有限元分析[J]. 工程力学, 2012, 29(7): 256-263.
[8] 陈适才;闫维明;李振宝;王文明;高杰. 大型预制混凝土梁柱叠合板中节点整体抗震性能试验研究[J]. 工程力学, 2012, 29(2): 135-141.
[9] 李 楠;张季超;楚先锋;刘 波. 预制混凝土结构后浇整体式梁柱节点抗震性能试验研究[J]. 工程力学, 2009, 26(增刊 I): 41-044.
[10] 徐新生;纪 涛;郑永峰. FRP筋混凝土梁挠度的特点及计算方法[J]. 工程力学, 2009, 26(增刊 I): 171-175.
[11] 于旭;刘伟庆. 新型方钢管混凝土柱-钢梁节点的受力机理分析[J]. 工程力学, 2006, 23(6): 114-119.
[12] 姚侃;赵鸿铁;葛鸿鹏. 古建木结构榫卯连接特性的试验研究[J]. 工程力学, 2006, 23(10): 168-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[2] 曾宪武;韩大建. 多重双频率调谐质量阻尼器制振性能及对桥梁抖振的控制[J]. 工程力学, 2006, 23(1): 74 -80 .
[3] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[4] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[5] 梅 岭;梅国雄;宰金珉. K0≠1时地基弹塑性承载力的数值分析[J]. 工程力学, 2009, 26(9): 112 -116 .
[6] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[7] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[8] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[9] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[10] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日