工程力学 ›› 2020, Vol. 37 ›› Issue (5): 199-207.doi: 10.6052/j.issn.1000-4750.2019.07.0399

• 土木工程学科 • 上一篇    下一篇

超大型冷却塔风致倒塌全过程数值仿真与受力性能分析

吴鸿鑫1, 柯世堂1,2, 王飞天1, 葛耀君2   

  1. 1. 南京航空航天大学土木工程系, 江苏, 南京, 210016;
    2. 同济大学土木工程防灾国家重点实验室, 上海 200092
  • 收稿日期:2019-07-24 修回日期:2019-10-18 出版日期:2020-05-25 发布日期:2019-11-01
  • 通讯作者: 柯世堂(1982-),男,安徽人,教授,博士,博导,主要从事建筑结构工程与风洞试验研究(E-mail:keshitang@163.com). E-mail:keshitang@163.com
  • 作者简介:吴鸿鑫(1996-),男,广东人,硕士生,主要从事建筑结构抗风抗震研究(E-mail:15217336888@163.com);王飞天(1991-),男,山西人,硕士生,主要从事建筑结构抗风抗震研究(E-mail:wangfeitiannuaa@163.com);葛耀君(1958-),男,上海人,教授,博士,博导,主要从事结构和桥梁抗风研究(E-mail:yaojunge@tongji.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51878351,U1733129,51761165022)

NUMERICAL SIMULATION AND FORCE PERFORMANCE ANALYSIS OF WIND-INDUCED COLLAPSE OF SUPER LARGE COOLING TOWERS

WU Hong-xin1, KE Shi-tang1,2, WANG Fei-tian1, GE Yao-jun2   

  1. 1. Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China;
    2. State Key Laboratory of Civil Engineering Disaster Prevention, Tongji University, Shanghai 200092, China
  • Received:2019-07-24 Revised:2019-10-18 Online:2020-05-25 Published:2019-11-01

摘要: 历史上强风作用下大型冷却塔风毁事件多次发生,现有研究关注的重点大多为风致塔筒局部强度超限或失稳破坏,均忽略了由局部损坏引发的整体连续倒塌破坏的后续现象,且难以揭示大型冷却塔风致倒塌过程及作用机制。鉴于此,基于计算流体动力学(CFD)与显式动力分析算法(LS-DYNA)技术提出了大型冷却塔风致倒塌全过程数值仿真模拟方法,并以山西潞安电厂世界最高220 m超大型冷却塔为例,建立了考虑材料非线性塔筒-支柱三维有限元模型,并分析了结构动力特性;基于显示动力时程分析方法,加载基于CFD获得的塔筒三维平均风压进行拟动力分析,数值再现了超大型冷却塔风致倒塌全过程;研究了塔筒应力分布变化规律与倒塌全过程的扭曲变形姿态等特征,提炼出冷却塔风致倒塌的受力特点与作用机制,并讨论了单元失效参数的影响。结果验证了该文数值方法可以有效模拟超大型冷却塔风致倒塌全过程;其倒塌过程始于塔筒喉部迎风面大变形,并在两侧30°范围内呈现褶皱现象,最终因变形不协调而相互牵扯垮塌。研究表明,强风致超大型冷却塔倒塌受力机制可划分为弯拱机制与悬绞线机制,材料模型的单元失效参数对于超大型冷却塔风致倒塌的影响不可忽略。

关键词: 超大型冷却塔, 风荷载, 倒塌全过程, 数值仿真, 受力性能

Abstract: Historically, the wind-induced collapse of large-scale cooling tower has occurred many times under the action of strong winds. Most studies focus on local strength overrun or instability of wind-induced towers, and ignore the subsequent phenomenon of overall continuous collapse caused by local damage. It is difficult to reveal the wind-induced collapse process and mechanism of large cooling towers. In view of this, based on CFD and LS-DYNA technology, a numerical simulation method for wind-induced collapse of large-scale cooling towers was proposed. Taking the highest large-scale cooling tower in the world as an example, which is 220 meters high and local in the Shanxi Lu'an Power Plant. A three-dimensional finite element model considering material nonlinearity was established, and the dynamic characteristics of the structure were analyzed. Subsequently, based on the dynamic time history analysis method, the three-dimensional average wind pressure of the tower obtained by CFD was loaded to carry out the pseudo-dynamic analysis, and the whole process of wind-induced collapse of the super-large cooling tower was reproduced. Finally, the characteristics of the variation of the stress distribution of the tower and the distorted deformation posture of the whole collapse process are studied. The force characteristics and mechanism of the wind tower collapse caused by the cooling tower were discussed, as well as the influence of the unit failure parameters. The results verified that the numerical method can effectively simulate the whole process of wind-induced collapse of super-large cooling towers. The collapse process begins with large deformation of the windward side of the tower throat and wrinkles in the range of 30° on both sides, and finally the deformation is uncoordinated, which resulted in collapsing into each other. The study indicated that the mechanism of collapse of large-scale cooling tower caused by strong wind can be divided into bending mechanism and hanging strand mechanism. The influence of unit failure parameters of material model on wind-induced collapse of super-large cooling tower cannot be ignored.

Key words: super large cooling towers, wind load, collapse process, numerical simulation, force performance

中图分类号: 

  • TU279.741
[1] Croll J G A, Kemp K O, Kaleli F. Meridionally imperfect cooling towers[J]. Journal of the Engineering Mechanics Division, 1979, 105(5):761-777.
[2] Niemann H, Prpper H. Some properties of fluctuating wind pressures on a full-scale cooling tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1975, 1(4):349-359.
[3] Croll J, Kaleli F, Kemp J. A simplified approach to the analysis of geometrically imperfect cooling tower shells[J]. Engineering Structures, 1979, 1(2):92-98.
[4] Kato S, Yokoo Y. Effects of geometric imperfections on stress distributions in cooling towers[J]. Engineering Structures, 1980, 2(3):150-156.
[5] 胡晓斌, 钱稼茹. 单层平面钢框架连续倒塌动力效应分析[J]. 工程力学, 2008, 25(6):38-43. Hu Xiaobin, Qian Jiaru. Analysis of dynamic effects of continuous collapse of single-layer planar steel frames[J]. Engineering Mechanics, 2008, 25(6):38-43. (in Chinese)
[6] GSA2005, Progressive collapse analysis and design guidelines for new federal office buildings and major modernization project[S]. USA:General Service Bureau, 2005.
[7] UFC 4-023-03, Design of structures to resist progressive collapse[S]. USA:Unified Facilities Criteria, 2009.
[8] CECS 392-2014, 建筑结构抗倒塌设计规范[S]. 北京:中国计划出版社, 2015. CECS 392-2014, Design specifications for building structure collapse[S]. Beijing:China Planning Press, 2015. (in Chinese)
[9] 柯世堂, 侯宪安, 赵林, 等. 特大型冷却塔风荷载和风振响应参数分析:自激力效应[J]. 土木工程学报, 2012, 45(12):45-53. Ke Shitang, Hou Xianan, Zhao Lin, et al. Analysis of wind load and wind vibration response parameters of extra large cooling tower:Self-excitation effect[J]. China Civil Engineering Journal, 2012, 45(12):45-53. (in Chinese)
[10] 徐亚洲, 白国良. 考虑混凝土材料变异性的超大型冷却塔随机屈曲承载力分析[J]. 工程力学, 2012, 29(8):208-212. Xu Yazhou, Bai Guoliang. Analysis of random buckling bearing capacity of super large cooling tower considering variability of concrete materials[J]. Engineering Mechanics, 2012, 29(8):208-212. (in Chinese)
[11] 顾祥林, 印小晶, 林峰, 等. 建筑结构倒塌过程模拟与防倒塌设计[J]. 建筑结构学报, 2010, 31(6):179-187. Gu Xianglin, Yin Xiaojing, Lin Feng, et al. Simulation and collapse prevention design of building structure collapse process[J]. Journal of Building Structures, 2010, 31(6):179-187. (in Chinese)
[12] Bosman P B, Strickland I G, Prukl R. Strengthening of natural draught cooling tower shells with stiffening rings[J]. Engineering Structures, 1996, 20(10):909-914.
[13] 张军锋, 葛耀君, 赵林. 基于风洞试验的双曲线冷却塔静风整体稳定研究[J]. 工程力学, 2012, 29(5):68-77. Zhang Junfeng, Ge Yaojun, Zhao Lin. Study on global aerostatic stability of hyperboloidal cooling tower based on the wind tunnel tests[J]. Engineering Mechanics, 2012, 29(5):68-77. (in Chinese)
[14] Ke E T, Wang H, Wang T G, et al. Comparison of comprehensive stress performances of super-large cooling tower in different four-tower arrangements under 3D asymmetric wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179:158-172
[15] 张军锋, 葛耀君, 赵林. 群塔布置对冷却塔整体风荷载和风致响应的不同干扰效应[J]. 工程力学, 2016, 33(8):15-23. Zhang Junfeng, Ge Yaojun, Zhao Lin. Interference effects on global wind loads and wind induced responses for group hyperboloidal cooling towers[J]. Mechanics in Engineering, 2016, 33(8):15-23. (in Chinese)
[16] Sabouri-Ghoumi, Kharrazi M H K, Javidan P. Effect of stiffening rings on buckling stability of R.C. hyperbolic cooling towers[J]. Thin-Walled Structure, 2006, 44(2):152-158.
[17] Ke S T, Du L Y, Ge Y T, et al. Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers[J]. Structural Engineering and Mechanics, 2018, 66(2):273-283.
[18] 张军锋, 葛耀君, 赵林, 等. 双曲冷却塔子午线型对结构受力性能的影响[J]. 工程力学, 2014, 31(3):187-196. Zhang Junfeng, Ge Yaojun, Zhao Lin, et al. Effect of meridian type of hyperbolic cooling tower on structural stress performance[J]. Engineering Mechanics, 2014, 31(3):187-196. (in Chinese)
[19] GBT 50102-2014, 工业循环水冷却设计规范[S]. 北京:中国计划出版社, 2014. GBT 50102-2014, Design specification for industrial circulating water cooling[S]. Beijing:China Planning Press, 2014. (in Chinese)
[20] Wang H, Ke S, Ge Y, et al. Extreme and spectrum characteristics of wind loads on super-large cooling tower under different four-tower combinations[J]. Advances in Structural Engineering, 2018, 22(5):1238-1250.
[21] 李鹏飞, 赵林, 葛耀君, 等. 超大型冷却塔风荷载特性风洞试验研究[J]. 工程力学, 2008, 25(6):60-67. Li Pengfei, Zhao Lin, Ge Yaojun, et al. Wind tunnel test study on wind load characteristics of super large cooling towers[J]. Engineering Mechanics, 2008, 25(6):60-67. (in Chinese)
[22] 张培平. 基于LS-DYNA进行薄壁筒状结构物的爆破倒塌模拟研究[D]. 青岛:山东科技大学, 2008. Zhang Peiping. Study on blasting collapse simulation of thin-walled tubular structures based on ls-dyna[D]. Qingdao:Shandong University of Science and Technology, 2008. (in Chinese)
[23] Madurapperuma M A K M, Niwa K. Concrete material models in LS-DYNA for impact analysis of reinforced concrete structures[J]. Applied Mechanics and Materials, 2014, 566:173-178.
[24] Ke S T, Yu W, Zhu P. Full-scale measurements and damping ratio properties of cooling towers with typical heights and configurations[J]. Thin-Walled Structures, 2018, 124:437-448.
[25] 孙琪超. 自然通风冷却塔整体稳定性模型实验及有限元分析研究[D]. 杭州:浙江大学, 2017:17-24. Sun Qichao. Experimental study and finite element analysis of the overall stability of natural ventilation cooling tower[D]. Hangzhou:Zhejiang University, 2017:17-24. (in Chinese)
[1] 王伟, 赵亚硕, 方成, 张瑞斌. 并联高强钢环簧组自复位抗震阻尼器研制与试验研究[J]. 工程力学, 2020, 37(4): 87-95.
[2] 李艺, 黄国庆, 程旭, 赵丽娜. 移动型下击暴流及其作用下高层建筑风荷载的数值模拟[J]. 工程力学, 2020, 37(3): 176-187.
[3] 侯和涛, 臧增运, 鲁玉曦, 刘锦伟, 季可凡, 王彦明. 新型全装配钢-混凝土组合梁连接件推出试验研究[J]. 工程力学, 2020, 37(2): 201-210.
[4] 俞怡恬, 黄生洪, 王新. 龙卷风冲击高层建筑气动力效应数值模拟[J]. 工程力学, 2020, 37(1): 168-174.
[5] 陈琳琳, 崔会敏, 郑云飞, 刘庆宽. 大跨柱面网壳结构风荷载试验研究[J]. 工程力学, 2019, 36(S1): 189-193.
[6] 安苗, 刘庆宽, 马文勇, 刘小兵. 椭圆形体育馆悬挑罩棚风荷载分布规律的试验研究[J]. 工程力学, 2019, 36(S1): 199-202.
[7] 王激扬, 陈勇, 郭勇, 陈聪, 孙炳楠. 窄基输电塔分离式K型节点的受力性能试验研究[J]. 工程力学, 2019, 36(S1): 66-70.
[8] 贾明明, 李志平, 吕大刚, 侯宪安, 郎路光. 超大型冷却塔风荷载时程响应及动力抗风性能分析[J]. 工程力学, 2019, 36(S1): 118-124.
[9] 田敏, 赵林, 焦双健, 葛耀君. 双曲壳结构非均匀风压作用局部稳定验算[J]. 工程力学, 2019, 36(9): 136-142,153.
[10] 李元龙, 王金相, 林尚剑, 唐奎, 陈兴旺, 黄瑞源. 水下爆炸作用下固支多层片组结构的塑性毁伤研究[J]. 工程力学, 2019, 36(8): 248-256.
[11] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7): 146-155.
[12] 李维勃, 王国砚, 钱志浩, 王昊. 基于径向基函数的冷却塔风场重构[J]. 工程力学, 2019, 36(5): 226-234.
[13] 宋子杰, 胡志强. 预测船舶碰撞与搁浅结构动力响应的程序实现[J]. 工程力学, 2018, 35(8): 245-256.
[14] 初明进, 张庆池, 刘继良, 邱臻, 王琳, 谢天宇. 配置不同水平钢筋的自适应分缝剪力墙受剪性能试验研究[J]. 工程力学, 2018, 35(2): 214-220.
[15] 庞瑞, 许清风, 梁书亭, 朱筱俊. 全装配式RC楼盖板缝节点拉剪复合受力性能试验研究[J]. 工程力学, 2018, 35(10): 112-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[2] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[3] 何 政;金建平;宋继广. 带载状态下CFRP约束混凝土圆柱膨胀比试验研究[J]. 工程力学, 2009, 26(9): 145 -151, .
[4] 熊铁华;梁枢果;邹良浩. 风荷载下输电铁塔的失效模式及其极限荷载[J]. 工程力学, 2009, 26(12): 100 -104, .
[5] 王 丽;鲁晓兵;时忠民. 钙质砂地基中桶形基础水平动载响应实验研究[J]. 工程力学, 2010, 27(2): 193 -203 .
[6] 白永强;汪 彤;吕良海;孙 亮;帅 健;陈 钢. 拉弯联合载荷下弹塑性J积分估算方法研究[J]. 工程力学, 2010, 27(03): 6 -009, .
[7] 刘 纲;邵毅敏;黄宗明;周晓君. 长期监测中结构温度效应分离的一种新方法[J]. 工程力学, 2010, 27(03): 55 -061, .
[8] 张 衡;魏德敏. 考虑温度影响的混凝土微观断裂模型[J]. 工程力学, 2010, 27(10): 14 -020 .
[9] 童根树;俞一弓. 弯曲型支撑-框架弹塑性稳定的简化分析[J]. 工程力学, 2011, 28(1): 186 -191 .
[10] 沈煜年;尹晓春. 非均质柔性杆撞击瞬态动力学动态子结构法[J]. 工程力学, 2008, 25(11): 42 -047 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日