工程力学 ›› 2020, Vol. 37 ›› Issue (5): 208-216.doi: 10.6052/j.issn.1000-4750.2019.07.0402

• 土木工程学科 • 上一篇    下一篇

建筑隔震金属柔性管道抗震性能试验研究

卢嘉茗1,2, 解琳琳1,2, 李爱群1,2,3, 曾德民1,2, 杨参天3, 杜红凯1,2   

  1. 1. 北京建筑大学土木与交通工程学院, 北京 100044;
    2. 北京建筑大学"工程结构与新材料"北京市高等学校工程研究中心, 北京 100044;
    3. 东南大学土木工程学院, 南京 210096
  • 收稿日期:2019-07-24 修回日期:2019-09-18 出版日期:2020-05-25 发布日期:2019-10-18
  • 通讯作者: 解琳琳(1986-),男,江苏南通人,讲师,博士,主要从事高层和超高层抗震设计研究(E-mail:xielinlin@bucea.edu.cn). E-mail:xielinlin@bucea.edu.cn
  • 作者简介:卢嘉茗(1994-),女,广东东莞人,硕士生,主要从事医疗建筑抗震性能研究(E-mail:2108521317064@stu.bucea.edu.cn);李爱群(1962-),男,湖南耒阳人,教授,博士,博导,主要从事工程防灾减灾研究(E-mail:liaiqun@bucea.edu.cn);曾德民(1970-),男,吉林公主岭人,研究员,博士,主要从事结构隔震减震技术及城市防灾减灾研究(E-mail:zengdemin@vip.163.com);杨参天(1993-),男,山西晋城人,博士生,主要从事高层隔震结构研究(E-mail:yangcantian@outlook.com);杜红凯(1981-),男,山东人,高级实验师,博士,主要从事工程结构抗震及减震研究(E-mail:duhongkai@163.com).
  • 基金资助:
    北京市自然科学基金项目(8192008);中国地震局工程力学研究所基本科研业务费专项资助项目(2019D17);北京市教委科技一般项目(KM201910016014);长江学者和创新团队发展计划项目(IRT_17R06);北京建筑大学研究生创新项目(PG2019029,PG2019033)

EXPERIMENTS ON SEISMIC PERFORMANCE OF METAL FLEXIBLE PIPES FOR SEISMICALLY ISOLATED BUILDINGS

LU Jia-ming1,2, XIE Lin-lin1,2, LI Ai-qun1,2,3, ZENG De-min1,2, YANG Can-tian3, DU Hong-kai1,2   

  1. 1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    2. Beijing Higher Institution Engineering Research Center of Civil Engineering Structure and Renewable Material, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    3. School of Civil Engineering, Southeast University, Nanjing 210096, China
  • Received:2019-07-24 Revised:2019-09-18 Online:2020-05-25 Published:2019-10-18

摘要: 隔震层中具有大变形需求的柔性管道显著影响隔震建筑的震后功能可恢复能力,然而目前对于柔性管道抗震性能的研究还相对较少。该文以量大面广且承载重要功能的竖向安装金属柔性管道为研究对象,考虑实际工程应用现状和相关规范建议,以400 mm变形为目标,以公称内径、管道安装长度、管道设计长度为研究变量,共设计了9组27个试件,进行了抗震性能试验,研究了金属柔性管道的损伤演化模式、关键损伤状态及其变形和承载能力。结果表明:目前工程上采用的柔性管道设计方案无法满足大变形需求或存在安全隐患,规范建议的方案则可很好地满足目标;对于破坏的柔性管道主要经历两个关键状态,即外金属套网绷直和单侧完全拔出破坏,破坏后无法承受工作压强需要更换;水平变形能力主要取决于管道安装长度和管道设计长度,随两者的增大而增大;破坏主要取决于管道受拉竖向荷载分量,该分量近似正比于公称内径,破坏水平荷载随着公称内径和极限水平位移的增大而增大。该文的研究成果可为建筑隔震金属柔性管道的抗震设计和易损性研究提供重要参考。

关键词: 隔震, 金属柔性管道, 抗震性能, 损伤状态, 变形和承载能力

Abstract: The flexible pipes, which are designed according to the large deformation requirements of isolation layers, significantly affect the seismic resilience of seismically isolated building. However, the research on the seismic performance of flexible pipes is rarely reported. The vertical metal flexible pipes, which are widely used with important functions, are herein selected as the research object. With the consideration of real engineering application status and recommendations specified in regulation, experiments on 9 groups of 27 specimens which aims at a large deformation of 400 mm were conducted. The nominal inner diameter, pipe installation length and pipe design length are considered variables. The damage evolution mode, critical damage state, deformation and bearing capacity of metal flexible pipelines were investigated. The results indicate that:the design scheme of flexible pipes adopted in the current engineering cannot meet the large deformation requirements or exist security risk, while the scheme required by the regulation can fully meet the target; the damaged flexible pipes mainly experience two key states. The first state is that the coat metal net is stretched. The second state is that the coat net is unilaterally pulled out and destroyed, then the flexible pipes cannot bear the working pressure and a replacement is required; the horizontal deformation capacity mainly depends on the pipe installation length and pipe design length, it increases with the increase of these two lengths; the damage mostly depends on the vertical load component provided by the tension force of pipes, which is approximately proportional to the nominal inner diameter. The horizontal load at the failure moment increases with the increase of nominal inner diameter and the limit horizontal displacement. The research outcome can provide an important reference for the seismic design and fragility research of metal flexible pipes in seismically isolated building.

Key words: seismic isolation, metal flexible pipes, seismic performance, damage state, deformation and bearing capacities

中图分类号: 

  • P315.9
[1] PEER. Report of the seventh joint planning meeting of NEES/E-defense collaborative research on earthquake engineering[R]. Berkeley:University of California, 2010.
[2] United Nations. Sendai framework for disaster risk reduction 2015-2030[EB/OL]. http://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf,2015.
[3] Guha-Sapir D, Vos F, Below R, et al. Annual disaster statistical review 2011:the numbers and trends[R]. Brussel, Belgium:Centre for Research on the Epidemiology of Disasters, 2012.
[4] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7):941-948. Lü Xilin, Chen Yun, Mao Yuanjun. New concept of structural seismic design:earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7):941-948. (in Chinese)
[5] 周颖, 吴浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6):1-12. Zhou Ying, Wu Hao, Gu Anqi. Earthquake engineering:From earthquake resistance, energy dissipation, and isolation, to resilience[J]. Engineering Mechanics, 2019, 36(6):1-12. (in Chinese)
[6] 刘彦辉, 谭平, 周福霖, 等. 高层框架-剪力墙隔震结构地震响应研究[J]. 工程力学, 2015, 32(3):134-139, 224. Liu Yanhui, Tan Ping, Zhou Fulin, et al. Study of seismic response in isolated high-rise frame-shear wall structures during earthquakes[J]. Engineering Mechanics, 2015, 32(3):134-139, 224. (in Chinese)
[7] 李爱群. 日本东北大地震之隔减震建筑考察与思考[J]. 工程力学, 2012, 29(增刊II):69-77, 106. Li Aiqun. Investigation and consideration of seismic isolation and energy dissipation structures in Tohoku Earthquake[J]. Engineering Mechanics, 2012, 29(Suppl II):69-77, 106. (in Chinese)
[8] 王涛, 王飞, 候钢领, 等. 核电厂隔震结构的振动台试验研究[J]. 工程力学, 2014, 31(10):62-68, 84. Wang Tao, Wang Fei, Hou Gangling, et al. Shaking table tests on base-isolated nuclear power plant[J]. Engineering Mechanics, 2014, 31(10):62-68, 84. (in Chinese)
[9] 王玉梅, 熊立红, 许卫晓. 芦山7.0级地震医疗建筑震害与启示[J]. 地震工程与工程振动, 2013, 33(4):44-53. Wang Yumei, Xiong Lihong, Xu Weixiao. Seismic damage and damage enlightenment of medical buildings in Lushan Ms7.0 earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(4):44-53. (in Chinese)
[10] 贺思维, 曲哲, 叶良浩. 建筑常用给水管道地震易损性试验研究[J]. 土木工程学报, 2018, 51(10):11-19. He Siwei, Qu Zhe, Ye Lianghao. Experiment on seismic fragility of water supply pipelines in buildings[J]. China Civil Engineering Journal, 2018, 51(10):11-19. (in Chinese)
[11] Miranda E, Mosqueda D, Retamales R, et al. Performance of nonstructural components during the 27 February 2010 Chile Earthquake[J]. Earthquake Spectra, 2012, 28(Suppl 1):S453-S471.
[12] Nitta Y, Uruyu M, Suhara J, et al. A study on deformation capacity of pips between isolated and non-isolated structures[C]//Summaries of Technical Papers of Meeting Architectural Institute of Japan. B-2, Structures II, Structural Dynamics Nuclear Power Plants. Tokyo, Japan:Architectural Institute of Japan, 1996:1155-1156.
[13] Kato T, Mizuno Y, Sasaki K. An experimental study on piping system on piping system with universal expansion joint for base isolated building[C]//Architectural Institute of Japan. Summaries of Technical Papers of Meeting Architectural Institute of Japan. B-2, Structures II, Structural Dynamics Nuclear Power Plants. Tokyo, Japan:Architectural Institute of Japan, 2000:759-760.
[14] Sorace S, Terenzi, G. Analysis and demonstrative application of a base isolation/supplemental damping technology[J]. Earthquake Spectra, 2008, 24(3):775-793.
[15] 尚庆学, 王涛. 隔震建筑柔性管线的抗震性能试验研究[J]. 自然灾害学报, 2018, 27(1):50-60. Shang Qingxue, Wang Tao. Experimental study on seismic performance of flexible pipelines used in base isolated buildings[J]. Journal of Natural Disasters, 2018, 27(1):50-60. (in Chinese)
[16] JG/T 541-2017, 建筑隔震柔性管道[S]. 北京:中国标准出版社, 2017. JG/T 541-2017, Flexible connections for seismically isolated buildings[S]. Beijing:Standards Press of China, 2017. (in Chinese)
[17] GB/T 14525-2010, 波纹金属软管通用技术条件[S]. 北京:中国标准出版社, 2011. GB/T 14525-2010, General specification for corrugated metal hose assemblies[S]. Beijing:Standards Press of China, 2011. (in Chinese)
[18] FEMA 461, Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components[S]. Washington, D.C., USA:Federal Emergency Management Agency, 2007.
[1] 郑跃, 郑山锁, 董立国, 贺金川, 明铭. 酸雨环境下腐蚀RC剪力墙抗震性能试验研究[J]. 工程力学, 2020, 37(5): 190-198,227.
[2] 范重, 李媛媛, 李玮, 田玉基. 屈曲约束钢板剪力墙边框刚度影响研究[J]. 工程力学, 2020, 37(4): 30-40.
[3] 陈再现, 杨续波. 组合材料加固砖砌体的有限元模拟方法[J]. 工程力学, 2020, 37(4): 96-104.
[4] 吴从晓, 李定斌, 张骞, 吴从永, 邓雪松. PCF-MDC体系技术方案及抗震性能试验研究[J]. 工程力学, 2020, 37(4): 105-117.
[5] 纪晓东, 徐梦超, 庄赟城, 江枣. 钢筋混凝土剪力墙和连梁易损性曲线研究[J]. 工程力学, 2020, 37(4): 205-216.
[6] 徐龙河, 张格, 颜欣桐. 设置自复位支撑的钢筋混凝土框架结构抗震性能研究[J]. 工程力学, 2020, 37(2): 90-97.
[7] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124-133.
[8] 朱宏平, 沈文爱, 雷鹰, 袁涌, 胡宇航, 张莹. 结构减隔震控制系统性能监测、评估与提升[J]. 工程力学, 2020, 37(1): 1-16.
[9] 李补拴, 路瑶, 赵根田, 闻洋. PEC柱-异形钢梁框架中节点抗震性能试验研究[J]. 工程力学, 2020, 37(1): 126-134.
[10] 邓明科, 李琦琦, 刘海勃, 景武斌. 高延性混凝土低矮剪力墙抗震性能试验研究及抗剪承载力计算[J]. 工程力学, 2020, 37(1): 63-72.
[11] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[12] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[13] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[14] 王维超, 刘泽, 于桂兰. 周期十字空沟地震表面波屏障[J]. 工程力学, 2019, 36(S1): 144-148.
[15] 刘岩钊, 尹首浮, 于桂兰. 周期格栅式表面波屏障的设计与性能研究[J]. 工程力学, 2019, 36(S1): 324-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[2] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[3] 何 政;金建平;宋继广. 带载状态下CFRP约束混凝土圆柱膨胀比试验研究[J]. 工程力学, 2009, 26(9): 145 -151, .
[4] 熊铁华;梁枢果;邹良浩. 风荷载下输电铁塔的失效模式及其极限荷载[J]. 工程力学, 2009, 26(12): 100 -104, .
[5] 王 丽;鲁晓兵;时忠民. 钙质砂地基中桶形基础水平动载响应实验研究[J]. 工程力学, 2010, 27(2): 193 -203 .
[6] 白永强;汪 彤;吕良海;孙 亮;帅 健;陈 钢. 拉弯联合载荷下弹塑性J积分估算方法研究[J]. 工程力学, 2010, 27(03): 6 -009, .
[7] 刘 纲;邵毅敏;黄宗明;周晓君. 长期监测中结构温度效应分离的一种新方法[J]. 工程力学, 2010, 27(03): 55 -061, .
[8] 张 衡;魏德敏. 考虑温度影响的混凝土微观断裂模型[J]. 工程力学, 2010, 27(10): 14 -020 .
[9] 张晓晶;杨 慧;汪 海. 细观结构对缝合复合材料力学性能的影响分析[J]. 工程力学, 2010, 27(10): 34 -041 .
[10] 童根树;俞一弓. 弯曲型支撑-框架弹塑性稳定的简化分析[J]. 工程力学, 2011, 28(1): 186 -191 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日