工程力学 ›› 2020, Vol. 37 ›› Issue (5): 228-236.doi: 10.6052/j.issn.1000-4750.2019.07.0418

• 土木工程学科 • 上一篇    下一篇

基于小样本记录的柱面网壳结构地震响应评估

李玉刚1, 范峰2, 洪汉平3   

  1. 1. 西北工业大学力学与土木建筑学院, 陕西, 西安 710072;
    2. 哈尔滨工业大学土木工程学院, 黑龙江, 哈尔滨 150090;
    3. 西安大略大学土木与环境工程系, 加拿大, 伦敦 N6A 5B9
  • 收稿日期:2019-07-26 修回日期:2019-11-21 出版日期:2020-05-25 发布日期:2019-12-13
  • 通讯作者: 李玉刚(1983-),男,黑龙江哈尔滨人,讲师,博士,硕导,从事大跨空间结构抗震理论研究(E-mail:ygli@nwpu.edu.cn). E-mail:ygli@nwpu.edu.cn
  • 作者简介:范峰(1971-),男,黑龙江哈尔滨人,教授,博士,博导,从事大跨空间结构抗震理论研究(E-mail:fanf@hit.edu.cn);洪汉平(1961-),男,江西南昌人,教授,博士,博导,主要从事结构可靠度分析和地震工程研究(E-mail:hongh@eng.uwo.ca).
  • 基金资助:
    国家自然科学基金项目(51608445)

EVALUATING THE SEISMIC EFFECTS ON A CYLINDRICAL LATTICE SHELL USING A SMALL NUMBER OF RECORDS

LI Yu-gang1, FAN Feng2, HONG Han-ping3   

  1. 1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China;
    3. Department of Civil and Environmental Engineering, University of Western Ontario, London, Canada, N6A 5B9
  • Received:2019-07-26 Revised:2019-11-21 Online:2020-05-25 Published:2019-12-13

摘要: 结构的地震反应可以采用时程分析法或反应谱法来估计,在用时程分析法计算结构抗震设计需求时,中国抗震设计规范规定了选择3条或至少7条地震动记录的准则。可以用峰值加速度(PGA)或加速度反应谱(SA)来对地震动记录进行调幅,但用哪一个地震动强度参数来调幅为最佳还是未知的。该文针对柱面网壳的分析结果表明:合适的地震动强度参数取决于所需的结构反应,为降低由地震动记录间差异引起的结构最大杆件内力、支座反力或基底剪力的变异性,采用PGA调幅地震动记录要优于SA,而对于结构的最大位移反应则恰好相反。由于结构频谱十分密集以及受高阶振动模态的影响,采用反应谱法计算结构最大杆件内力或基底剪力是不合适的。同时,该文计算了采用3条和7条地震动记录准则获得的结构最大杆件内力和基底剪力的统计值,以期能为选择合适的地震动强度参数和地震动记录数量提供依据。

关键词: 网壳结构, 抗震设计需求, 调幅, 统计, 数值分析

Abstract: The time-history analysis procedure and the response spectrum method are used to estimate the seismic responses. The Chinese design codes recommend a set of criteria to select and use three or seven ground motion records to calculate seismic design demands if the time-history analysis is used. It is unknown which one of the two options provide statistically more consistent estimations of the seismic design demands if the peak ground acceleration (PGA) or spectral acceleration (SA) is used to scale the records. The results in this study on a cylindrical lattice shell indicate that the preferred intensity measure for scaling depends on the response of interest. To reduce the variability in the maximum structural member forces, support reaction or base shear caused by record-to-record variability, the use of PGA for scaling is preferable to the use of SA. The preference is reversed if the maximum displacement is of interest. The results also show that the use of the response spectrum method is inadequate for this structural type if the maximum structural member forces or base shear are of interest, partly because the vibration frequencies are very closely spaced and the seismic load effects are affected by higher vibration modes. Statistics of the maximum structural member forces, support reaction and base shear are obtained by using three and seven record components. The results are used to make suggestions on the number of record components and the preferred intensity measure to evaluate the seismic design demands for structural members and supports.

Key words: lattice shell, seismic design demand, scaling, statistics, numerical analysis

中图分类号: 

  • TU311.3
[1] 吕晓亮. 青岛客站风雨棚单层网壳结构设计[J]. 铁道标准设计, 2009(11):118-120. Lü Xiaoliang. Structural design for single-layer reticulated shell of platform canopy in Qingdao railway station[J]. Railway Standard Design, 2009(11):118-120. (in Chinese)
[2] 沈世钊. 网壳结构的稳定性[J]. 土木工程学报, 1999, 32(6):11-19. Shen Shizhao. Stability of latticed shells[J]. China Civil Engineering Journal, 1999, 32(6):11-19. (in Chinese)
[3] 朱钊辰, 罗永峰, 黄青隆, 等. 基于反演推定的空间结构随机缺陷传播法[J]. 工程力学, 2018, 35(12):89-97. Zhu Zhaochen, Luo Yongfeng, Huang Qinglong, et al. Stochastic imperfection propagation method for spatial structures based on inversion reckoning[J]. Engineering Mechanics, 2018, 35(12):89-97. (in Chinese)
[4] 叶继红, 张梅. 单层网壳结构弹塑性屈曲分析的离散单元法研究[J]. 工程力学, 2019, 36(7):30-37. Ye Jihong, Zhang Mei. Discrete element method for elastoplastic buckling analysis of single-layer reticulated shells[J]. Engineering Mechanics, 2019, 36(7):30-37. (in Chinese)
[5] 陆明飞, 叶继红. 基于构形易损性理论的单层网壳结构静力稳定性研究[J]. 工程力学, 2017, 34(1):76-84. Lu Mingfei, Ye Jihong Static stability research on single-layer spherical shells based on form vulnerability theory[J]. Engineering Mechanics, 2017, 34(1):76-84. (in Chinese)
[6] Li Q S, Chen J M. Nonlinear elastoplastic dynamic analysis of single-layer reticulated shells subjected to earthquake excitation[J]. Computers & structures, 2003, 81(4):177-188.
[7] Zhi X D, Nie G B, Fan F, et al. Vulnerability and risk assessment of single-layer reticulated domes subjected to earthquakes[J]. Journal of Structural Engineering, ASCE, 2012, 138(12):1505-1514.
[8] Yu Z W, Zhi X D, Fan F, et al. Effect of substructures upon failure behaviour of steel reticulated domes subjected to the severe earthquake[J]. Thin-Walled Structures, 2011, 49(9):1160-1170.
[9] Li Y G, Fan F, Hong H P. Effect of support flexibility on seismic responses of a reticulated dome under spatially correlated and coherent excitations[J]. Thin-Walled Structures, 2014, 82:343-351.
[10] Ma H H, Fan F. Wen P, et al. Experimental and numerical studies on a single-layer cylindrical reticulated shell with semi-rigid joints[J]. Thin-Walled Structures, 2015, 86:1-9.
[11] 刘海锋, 罗尧治, 许贤. 焊接球节点刚度对网壳结构有限元分析精度的影响[J]. 工程力学, 2013, 30(1):350-358. Liu Haifeng, Luo Yaozhi, Xu Xian. Rigiditty of welded hollow spherical joints on finite element analysis precesion of reticulated shells[J]. Engineering Mechanics, 2013, 30(1):350-358. (in Chinese)
[12] 陈兆涛, 丁阳, 石运东, 等. 大跨空间结构竖向变刚度三维隔震装置及其隔震性能研究[J]. 建筑结构学报, 2019, 40(10):35-42. Chen Zhaotao, Ding Yang, Shi Yundong, et al. Research on isolation performance of three-dimensional isolation device with vertical variable stiffness for long-span spatial structures[J]. Journal of Building Structures, 2019, 40(10):35-42. (in Chinese)
[13] Li Y G, Fan F, Hong H P. Influence of number of records and scaling on the statistics of seismic demand for lattice structure[J]. Thin-Walled Structures, 2015, 87:115-126.
[14] ASCE/SEI 7-10, Minimum design loads for buildings andother structures[S]. American Society of Civil Engineering, 2010.
[15] NBCC. The national building code of Canada[S]. Ottawa:Oational Research Council, 2010.
[16] GB50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[17] Ay B Ö, Akkar S. A procedure on ground motion selection and scaling for nonlinear response of simple structural systems[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(12):1693-1707.
[18] Bommer J J, Acevedo A B. The use of real earthquake accelerograms as input to dynamic analysis[J]. Journal of Earthquake Engineering, 2004, 8(1):43-91.
[19] Katsanos E, Sextos A, Manolis G. Selection of earthquake ground motion records:A state-of-the-art review from a structural engineering perspective[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(4):157-169.
[20] Beyer K, Bommer J J. Selection and scaling of real accelerograms for bi-directional loading:a review of current practice and code provisions[J]. Journal of Earthquake Engineering, 2007, 11(1):13-45.
[21] Reyes J, Kalkan E. How many records should be used in an ASCE/SEI-7 ground motion scaling procedure?[J]. Earthquake Spectra, 2012, 28(3):1223-1242.
[22] JGJ7-2010, 空间网格结构技术规程[S]. 北京:中国建筑工业出版社, 2010. JGJ7-2010, Technical specification for space frame strucyures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[23] Bazzurro P, Cornell C A. Disaggregation of seismic hazard[J]. Bulletin of the Seismological Society of America 1999, 89(2):501-520.
[24] Hong H P, Goda K. A comparison of seismic hazard and risk deaggregation[J]. Bulletin of the Seismological Society of America, 2006, 96(6):2021-2039.
[25] Boore D M, Joyner W B, Fumal T E. Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes:A summary of recent work[J]. Seism. Res. Letters, 1997, 68(1):128-153.
[26] Giovenale P, Cornell C A, Esteva L. Comparing the adequacy of alternative ground motion intensity measures for the estimation of structural responses[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(8):951-979.
[1] 王勇, 马帅, 张亚军, 肖泽南, 张耕源, 陈振兴, 周萌. 火灾蔓延作用下混凝土连续板力学行为试验研究与模拟[J]. 工程力学, 2020, 37(3): 202-216.
[2] 王萌, 毕鹏, 李法雄. 带低屈服点钢材“延性保险丝”的钢框架盖板连接节点设计方法研究[J]. 工程力学, 2020, 37(2): 168-182.
[3] 乔扬, 陈海波, 许泽银, 王磊. 基于统计能量理论的飞行器壁板高频声振疲劳寿命预报及参数设计[J]. 工程力学, 2019, 36(9): 230-236,256.
[4] 范峰, 马会环, 马越洋. 半刚性节点网壳结构研究进展及关键问题[J]. 工程力学, 2019, 36(7): 1-7,29.
[5] 叶继红, 张梅. 单层网壳结构弹塑性屈曲分析的离散单元法研究[J]. 工程力学, 2019, 36(7): 30-37,47.
[6] 杨俊芬, 程锦鹏, 翟伟, 张文喆. 内填脱硫石膏砌块墙体的新型装配式钢框架抗震性能研究[J]. 工程力学, 2019, 36(6): 147-156.
[7] 郑文忠, 李玲, 张弛. HRB500/HRB600钢筋作纵筋的混凝土框架梁端弯矩调幅试验研究[J]. 工程力学, 2019, 36(5): 76-91,109.
[8] 郑文忠, 李玲, 王英. HRB500/HRB600钢筋作纵筋的混凝土连续梁弯矩调幅试验研究[J]. 工程力学, 2019, 36(3): 79-94.
[9] 陈仁朋, 鲁立, 张阳, 吴怀娜. 盾构管片UHPC加固技术及力学性能分析[J]. 工程力学, 2019, 36(11): 41-49.
[10] 郭影, 姜忻良, 曹东波, 白铁钧, 朱广轶, 冯春. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7): 139-149.
[11] 王勇, 段亚昆, 张亚军, 袁广林, 王腾焱, 吕俊利. 单向面内约束混凝土双向板抗火性能试验研究及数值分析[J]. 工程力学, 2018, 35(3): 65-78.
[12] 夏遵平, 王彤. 谐波噪声下的试验模态分析[J]. 工程力学, 2018, 35(3): 235-241.
[13] 任娟娟, 徐家铎, 田根源., 赵华卫, 蒲建锦. 客货共线无砟轨道轮轨力统计特征研究[J]. 工程力学, 2018, 35(2): 239-248.
[14] 王萌, 柯小刚, 吴照章. 可更换延性耗能连接组件的钢框架节点抗震性能研究[J]. 工程力学, 2018, 35(12): 151-163.
[15] 狄少丞, 王庆, 薛彦卓, 李佳霖. 破冰船冰区操纵性能离散元分析[J]. 工程力学, 2018, 35(11): 249-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[2] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[3] 何 政;金建平;宋继广. 带载状态下CFRP约束混凝土圆柱膨胀比试验研究[J]. 工程力学, 2009, 26(9): 145 -151, .
[4] 熊铁华;梁枢果;邹良浩. 风荷载下输电铁塔的失效模式及其极限荷载[J]. 工程力学, 2009, 26(12): 100 -104, .
[5] 王 丽;鲁晓兵;时忠民. 钙质砂地基中桶形基础水平动载响应实验研究[J]. 工程力学, 2010, 27(2): 193 -203 .
[6] 白永强;汪 彤;吕良海;孙 亮;帅 健;陈 钢. 拉弯联合载荷下弹塑性J积分估算方法研究[J]. 工程力学, 2010, 27(03): 6 -009, .
[7] 张 衡;魏德敏. 考虑温度影响的混凝土微观断裂模型[J]. 工程力学, 2010, 27(10): 14 -020 .
[8] 张晓晶;杨 慧;汪 海. 细观结构对缝合复合材料力学性能的影响分析[J]. 工程力学, 2010, 27(10): 34 -041 .
[9] 童根树;俞一弓. 弯曲型支撑-框架弹塑性稳定的简化分析[J]. 工程力学, 2011, 28(1): 186 -191 .
[10] 申红侠;顾 强. 钢梁-钢筋混凝土柱梁柱中节点非线性有限元模拟[J]. 工程力学, 2009, 26(1): 37 -042, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日