工程力学 ›› 2020, Vol. 37 ›› Issue (5): 26-35.doi: 10.6052/j.issn.1000-4750.2019.07.0419

• 基本方法 • 上一篇    下一篇

基于子结构的Woodbury非线性分析方法

苏璞, 李钢, 余丁浩   

  1. 大连理工大学海岸和近海工程国家重点实验室, 辽宁, 大连 116024
  • 收稿日期:2019-07-29 修回日期:2019-12-04 出版日期:2020-05-25 发布日期:2019-12-13
  • 通讯作者: 李钢(1979-),男,辽宁葫芦岛人,教授,博士,博导,主要从事结构工程抗震等研究(E-mail:gli@dlut.edu.cn). E-mail:gli@dlut.edu.cn
  • 作者简介:苏璞(1994-),男,山西吕梁人,博士生,主要从事结构非线性分析等研究(E-mail:supu@mail.dlut.edu.cn);余丁浩(1989-),男,河北邯郸人,博士后,主要从事结构非线性分析等研究(E-mail:ydh@dlut.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2018YFC1504303);国家自然科学基金项目(51878112);大连市高层次人才创新支持计划项目(2017RD04)

A WOODBURY NONLINEAR ANALYSIS APPROACH BASED ON THE SUBSTRUCTURING METHOD

SU Pu, LI Gang, YU Ding-hao   

  1. State Key Laboratory of Costal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2019-07-29 Revised:2019-12-04 Online:2020-05-25 Published:2019-12-13

摘要: 非线性分析是研究结构性能的重要手段,准确并高效的模拟非线性行为,对评估结构安全性具有重要意义。工程结构材料非线性行为一般仅发生在局部区域,考虑结构的局部非线性特征,往往能有效提高计算效率。Woodbury公式被应用于多种数值算法中来高效地求解局部材料非线性问题,该公式仅需对小规模的Schur补矩阵进行分解,避免了对整体刚度矩阵的分解运算。然而,Schur补矩阵通常不具备稀疏特征,且其阶数与非线性规模相关,因此,当非线性区域较大时,Woodbury公式的高效性受到限制。为此,该文提出了基于子结构的Woodbury非线性分析方法,该方法将Schur补矩阵分解为若干个子矩阵,大幅降低了非线性分析过程中Schur补矩阵的规模。最后将该方法应用于某钢框架结构的动力非线性分析,并从精度和效率两方面与传统Woodbury法做了对比;结果表明:该文方法在保证计算精度的前提下改善了Woodbury公式的计算性能,进一步拓宽了其适用范围。

关键词: 子结构法, 隔离非线性有限元法, 材料非线性, Woodbury公式, 时间复杂度

Abstract: Nonlinear analysis is an important means to study structural performance. Accurate and efficient simulation of nonlinear behavior is of great significance for evaluating structural safety. Material nonlinear behavior generally occurs in some local regions for most engineering structures. The computational efficiency of nonlinear analyses can be greatly improved by taking advantage of the characteristics of local nonlinearity. The Woodbury formula has been employed by multiple numerical algorithms to efficiently solve structural analysis problems with local nonlinearity. The use of the Woodbury formula only needs to factorize a small-scale Schur complement matrix and the corresponding operation of the global stiffness can be avoided. However, because the Schur complement matrix is dense and its dimension depends on the scale of the nonlinear domains, the achievement of high efficiency of the Woodbury formula requires the condition of local nonlinearity to be satisfied. To overcome the limitation of the Woodbury formula, a Woodbury nonlinear analysis approach based on the substructuring method is proposed, in which the order of the Schur complement matrix is considerably reduced by partitioning the matrix into several submatrices. The proposed method is applied to the dynamic nonlinear analysis of a steel frame structure, and a comparison is made with conventional structural analysis methods based on the Woodbury for mulain terms of accuracy and efficiency. The results show that the proposed method is sufficiently accurate and improves the computational performance of the Woodbury formula so that its scope of application is broadened.

Key words: substructuring method, inelasticity-separated finite element method (IS-FEM), material nonlinearity, Woodbury formula, time complexity

中图分类号: 

  • TU311.4
[1] Ladevèze P, Nouy A, Loiseau O. A multiscale computational approach for contact problems[J]. Computer Methodsin Applied Mechanics and Engineering, 2002, 191(43):4869-4891.
[2] Feyel F. A multilevel finite element method to describe the response of highly non-linear structures using generalized continua[J]. Computer Methods in applied Mechanics and Engineering, 2003, 192(28):3233-3244.
[3] Kim D J, Duarte C A, Proenca S P. A generalized finite element method with global-local enrichment functions forconfined plasticity problems[J]. Computational Mechanics, 2012, 50(5):563-578.
[4] Bathe K, Gracewski S. On nonlinear dynamic analysis using substructuring and mode superposition[J]. Computers & Structures, 1981, 13(5/6):699-707.
[5] Chen H, Archer G C. New domain decomposition algorithm for nonlinear substructures[J]. Journal of Computing in Civil Engineering, 2005, 19(2):148-159.
[6] 孙宝印, 古泉, 张沛洲, 欧进萍. 考虑P-Δ效应的框架结构弹塑性数值子结构分析[J]. 工程力学, 2018, 35(2):153-159. Sun Baoyin, Gu Quan, Zhang Peizhou, Ou Jinping. Elastoplastic numerical substructure method of frame structure considering P-Δ effects[J]. Engineering Mechanics, 2018, 35(2):153-159. (in Chinese)
[7] Przemieniecki J S. Matrix structural analysis of substructures[J]. AIAA Journal, 1963, 1(1):138-147.
[8] Clough R W, Wilson E L. Dynamic analysis of large structural systems with local nonlinearities[J]. Computer Methods in Applied Mechanics and Engineering, 1979, 17-18(part-P1):107-129.
[9] Bathe K, Gracewski S. On nonlinear dynamic analysis using substructuring and mode superposition[J]. Computers & Structures, 1981, 13(5/6):699-707.
[10] Owen D R J, Goncalves O J A. Substructuring techniques in material nonlinear analysis[J]. Computers & Structures, 1982, 15(3):205-213.
[11] Ali S, Moore I D, Page A W. Substructuring technique in nonlinear analysis of brick masonry subjected to concentrated load[J]. Computers & Structures, 1987, 27(3):417-425.
[12] Huang J, Wang T L. Buckling analysis of large and complex structures by using substructuring techniques[J]. Computers & Structures, 1993, 46(5):845-850.
[13] Han T Y, Abel J F. Adaptive substructuring techniques in elasto-plastic finite element analysis[J]. Computers & Structures, 1985, 20(1/2/3):181-192.
[14] Sheu C H, Roeck G D, Laethem M V, et al. Multi-level substructuring and an experimental self-adaptive newton-raphson method for two-dimensional nonlinear analysis[J]. Computers & Structures, 1989, 33(2):489-497.
[15] Sheu C H, Roeck G D, Laethem M V, et al. Application of the substructuring technique to non-linear dynamic structural analysis[J]. Computers & Structures, 1990, 35(5):593-601.
[16] Farhat C, Roux F. A method of finite element tearing and interconnecting and its parallel solution algorithm[J]. International Journal for Numerical Methods in Engineering, 1991, 32(6):1205-1227.
[17] Farhat C, Crivelli L, Roux F X. Extending substructure based iterative solvers to multiple load and repeated analyses[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 117(s1/2):195-209.
[18] Farhat C, Geradin M. Using a reduced number of Lagrange multipliers for assembling parallel incomplete field finite element approximations[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 97(3):333-354.
[19] Hager W W. Updating the Inverse of a matrix[J]. Siam Review, 1989, 31(2):221-239.
[20] Akgun M A, Garcelon J H, Haftka R T, et al. Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas[J]. International Journal for Numerical Methods in Engineering, 2001, 50(7):1587-1606.
[21] Kolakowski P, Wiklo M, Holnickiszulc J, et al. The virtual distortion method-a versatile reanalysis tool for structures and systems[J]. Structural and Multidisciplinary Optimization, 2008, 36(3):217-234.
[22] Huang G, Wang H, Li G. An exact reanalysis method for structures with local modifications[J]. Structural and Multidisciplinary Optimization, 2016, 54(3):499-509.
[23] Li G, Yu D. Efficient inelasticity-separated finite-element method for material nonlinearity analysis[J]. Journal of Engineering Mechanics, 2018, 144(4):04018008.
[24] 李钢, 靳永强, 董志骞, 李宏男. 基于混合近似法的纤维梁单元非线性求解方法[J]. 土木工程学报, 2019, 52(6):81-91. Li Gang, Jin Yongqiang, Dong Zhiqian, Li Hongnan. Nonlinear solution method for fiber beam element based on the hybrid approximations method[J]. China Civil Engineering Journal, 2019, 52(6):81-91. (in Chinese)
[25] 张钰, 潘鹏.考虑子结构间相互作用的结构地震反应并行计算方法研究[J]. 工程力学, 2013, 30(5):118-124. Zhang Yu, Pan Peng. Parallel computing method for structural seismic response analysis considering interaction between substructures[J]. Engineering Mechanics, 2013, 30(5):118-124. (in Chinese)
[26] Bazaraa M S, Jarvis J J, Sherali H D. Linear programming and network flows[M]. Wiley, 1977.
[27] 李钢, 贾硕, 李宏男. 基于算法复杂度理论的拟力法计算效率评价[J].计算力学学报, 2018, 35(2):129-137. Li Gang, Jia Shuo, Li Hongnan. The efficiency evaluation of force analogy method base on the algorithm complexity theory[J]. Chinese Journal of Computational Mechanics, 2018, 35(2):129-137. (in Chinese)
[28] Kirsch U. Reanalysis of structures:A unified approach for linear, nonlinear, static and dynamic systems[M]. Springer, 2008.
[1] 李钢, 吕志超, 余丁浩. 隔离非线性分层壳有限单元法[J]. 工程力学, 2020, 37(3): 18-27.
[2] 李佳龙, 李钢, 李宏男. 基于隔离非线性的实体单元模型与计算效率分析[J]. 工程力学, 2019, 36(9): 40-49,59.
[3] 贾硕, 李钢, 李宏男. 基于Woodbury非线性方法的迭代算法对比分析[J]. 工程力学, 2019, 36(8): 16-29,58.
[4] 何光辉, 杨骁. Reddy高阶组合梁的非线性有限元分析[J]. 工程力学, 2015, 32(8): 87-95.
[5] 陈旭, 周东华, 章胜平, 王鹏, 李龙起. 压弯截面的弹塑性弯矩-曲率相关关系的解析法[J]. 工程力学, 2014, 31(11): 175-182,197.
[6] 丁道红 章 青 . 材料非线性分析的自然单元法[J]. 工程力学, 2012, 29(增刊Ⅱ): 97-100.
[7] 喻莹, 许贤, 罗尧治. 基于有限质点法的结构动力非线性行为分析[J]. 工程力学, 2012, 29(6): 63-69,84.
[8] 马怀发, 梁国平, 周永发. 弹塑性隐式阻尼迭代法[J]. 工程力学, 2012, 29(10): 57-62.
[9] 孟焕陵. 组合构件双重非线性分析模型研究与应用[J]. 工程力学, 2010, 27(7): 244-249.
[10] 王晓峰;杨庆山. 空间薄壁截面梁的材料非线性有限元模型[J]. 工程力学, 2009, 26(8): 138-142.
[11] 范 峰;马会环;沈世钊. 半刚性螺栓球节点受力性能理论与试验研究[J]. 工程力学, 2009, 26(12): 92-099.
[12] 桂国庆;李永华;李思明. 复杂高层连体结构多点激励地震反应分析[J]. 工程力学, 2009, 26(10): 95-101.
[13] 张耀庭;李宏健;. 全预应力砼梁动力性能试验研究[J]. 工程力学, 2008, 25(增刊Ⅰ): 0-075.
[14] 吴庆雄;陈宝春;韦建刚. 钢管混凝土结构材料非线性的一种有限元分析方法[J]. 工程力学, 2008, 25(6): 0-074.
[15] 王春林;吕志涛;. 半柔性悬挂结构分析的子结构模态法[J]. 工程力学, 2008, 25(2): 0-021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[2] 刘 钊. 基于能量法的系杆拱桥最优吊杆内力的确定[J]. 工程力学, 2009, 26(8): 168 -173 .
[3] 熊铁华;梁枢果;邹良浩. 风荷载下输电铁塔的失效模式及其极限荷载[J]. 工程力学, 2009, 26(12): 100 -104, .
[4] 王 丽;鲁晓兵;时忠民. 钙质砂地基中桶形基础水平动载响应实验研究[J]. 工程力学, 2010, 27(2): 193 -203 .
[5] 白永强;汪 彤;吕良海;孙 亮;帅 健;陈 钢. 拉弯联合载荷下弹塑性J积分估算方法研究[J]. 工程力学, 2010, 27(03): 6 -009, .
[6] 刘 纲;邵毅敏;黄宗明;周晓君. 长期监测中结构温度效应分离的一种新方法[J]. 工程力学, 2010, 27(03): 55 -061, .
[7] 陈升平;TAN Kiang Hwee. 钢纤维水泥砂浆加固砌体墙的平面外受力性能[J]. 工程力学, 2010, 27(4): 169 -172 .
[8] 张 衡;魏德敏. 考虑温度影响的混凝土微观断裂模型[J]. 工程力学, 2010, 27(10): 14 -020 .
[9] 龙渝川;李正良;. 基于能量耗散机制的混凝土受压损伤模型[J]. 工程力学, 2010, 27(增刊Ⅱ): 171 -177 .
[10] 童根树;俞一弓. 弯曲型支撑-框架弹塑性稳定的简化分析[J]. 工程力学, 2011, 28(1): 186 -191 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日