工程力学 ›› 2020, Vol. 37 ›› Issue (5): 237-248.doi: 10.6052/j.issn.1000-4750.2019.07.0421

• 土木工程学科 • 上一篇    下一篇

考虑面力作用的HFR-LWC梁抗爆试验研究

罗立胜1, 陈万祥2,3, 郭志昆1, 范鹏贤1, 袁鹏1   

  1. 1. 陆军工程大学爆炸冲击防灾减灾国家重点实验室, 江苏, 南京 210007;
    2. 中山大学土木工程学院, 广东, 广州 510275;
    3. 广东省海洋土木工程重点实验室, 广东, 广州 510275
  • 收稿日期:2019-07-30 修回日期:2019-11-20 出版日期:2020-05-25 发布日期:2019-11-29
  • 通讯作者: 陈万祥(1977-),男,广东高州人,副教授,博士,博导,主要从事工程结构抗冲击爆炸效应研究(E-mail:cwx_0806@sohu.com). E-mail:cwx_0806@sohu.com
  • 作者简介:罗立胜(1995-),男,广东罗定人,硕士生,主要从事结构抗冲击爆炸作用研究(E-mail:17512579018@163.com);郭志昆(1963-),男,江西九江人,教授,博导,主要从事抗冲击爆炸新材料研究(E-mail:gzkemail@sina.com);范鹏贤(1983-),男,江苏连云港人,副教授,博士,主要从事岩土介质静动力研究(E-mail:18936890687@163.com);袁鹏(1995-),男,江苏宿迁人,硕士生,主要从事结构新材料研究(E-mail:1603326801@qq.com).
  • 基金资助:
    国家自然科学基金项目(51378498,51578541,51979280)

EXPERIMENTAL STUDY ON BLAST-RESISTANCES OF HFR-LWC BEAM WITH MEMBRANE EFFECT

LUO Li-sheng1, CHEN Wan-xiang2,3, GUO Zhi-kun1, FAN Peng-xian1, YUAN Peng1   

  1. 1. State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, PLA University of Science and Technology, Nanjing, Jiangsu 210007, China;
    2. School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China;
    3. Guangdong Key Laboratory of Oceanic Civil Engineering, Guangzhou, Guangdong 510275, China
  • Received:2019-07-30 Revised:2019-11-20 Online:2020-05-25 Published:2019-11-29

摘要: 实际工程中,面力作用会导致梁板构件的承载力提高以及破坏模式改变。为确切把握面力作用在爆炸加载全过程的变化规律及其对结构抗力的影响,该文进行了混杂纤维轻骨料混凝土(HFR-LWC)梁抗爆性能试验研究,得到爆炸荷载超压时程曲线及梁跨中位移、破坏模式等试验数据,结合端部约束刚度计算方法分析了面力作用对HFR-LWC梁抗力及破坏形态的影响规律。结果表明:试验装置可以合理模拟爆炸加载过程中梁构件的面力作用,是一套定量评估面力贡献的有效工具。面力作用能有效阻止纵向钢筋过早进入屈服状态,充分发挥混凝土的抗压性能,抑制裂缝的开展,有效减小梁的跨中位移,从而提高HFR-LWC梁的抗爆能力。

关键词: 爆炸荷载, 承载能力, 试验研究, HFR-LWC梁, 面力效应

Abstract: In practice, the carrying-capacity of beam-slab members is usually enhanced by membrane effect, which results in the change of failure pattern. In order to reveal the influences of membrane effect on the loading process and the ultimate capacity of beam structures, blast-resistance tests of HFR-LWC beam (hybrid fiber reinforced-lightweight aggregate concrete) are performed. The overpressure history, mid-span displacement and failure mode of HFR-LWC beam are obtained. The carrying-capacity and failure pattern of HFR-LWC beams are discussed based on measured data and theoretical analysis. Results show that the membrane behavior on beams during blast loading is reasonably simulated in the test, which provides a reliable tool to quantitatively evaluate the contribution of in-plane force. The existing of membrane effect can effectively avoid the steel yielding, fully use the compressive strength of concrete, prevent the crack propagations, and reduce the mid-span displacement of HFR-LWC beams; thus, the blast-resistance of HFR-LWC beams is improved greatly by membrane effect.

Key words: blast loading, carrying-capacity, experimental study, HFR-LWC beam, membrane effect

中图分类号: 

  • TU352.13
[1] Krauthammer T, Bazeos N, Holmquist T J. Modified SDOF analysis of RC box-type structures[J]. Journal of Structural Engineering, 1986, 112(4):726-744.
[2] Ghabossi J, Millavec W A, Isenberg J. R/C structures under impulsive loading[J]. Journal of Structural Engineering, 1984, 110(3):505-552.
[3] Rosst J. Direet shear failure in reinforced concrete beams under impulsive loading[R]. Kirtland Air Force BASE, NM:Air Force Weapons Laboratory, 1983:83-84.
[4] 方秦,吴平安.爆炸荷载作用下影响RC梁破坏形态的主要因素分析[J]. 计算力学学报, 2003, 20(1):39-42. Fang Qin, Wu Ping'an. Main factors affecting failure modes of blast loaded RC beams[J]. Chinese Journal of Computational Mechanics, 2003, 20(1):39-42. (in Chinese)
[5] 师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D]. 天津:天津大学, 2009:34-49. Shi Yanchao. Dynamic response and damage mechanism of reinforced concrete structure under blast loading[D]. Tianjin:Tianjin University, 2009:34-49. (in Chinese)
[6] Liu Y, Yan J B, Huang F L. Behavior of reinforced concrete beams and columns subjected to blast loading[J]. Defence Technology, 2018:14(5):200-209.
[7] Wu C Q, Wu C, Chen W, et al. Analysis of retrofitted RC beam with fixed end supports against blast loads[J]. Key Engineering Materials, 2009, 400/401/402:795-800.
[8] Acito M, Stochino F, Tattoni S. Structural response and reliability analysis of RC beam subjected to explosive loading[J]. Applied Mechanics and Materials, 2011, 82:434-439.
[9] Remennikov A M, Uy B. Explosive testing and modelling of square tubular steel columns for near-field detonations[J]. Journal of Constructional Steel Research, 2014, 101(101):290-303.
[10] Hamra L, Demonceau J F, Denoel V. Pressure-impulse diagram of a beam developing non-linear membrane action under blast loading[J]. International Journal of Impact Engineering, 2015, 86:S0734743X15001578.
[11] 杨涛春, 李国强. 接触爆炸荷载下钢-混凝土组合梁的破坏模式研究[J]. 结构工程师, 2009, 25(1):34-40. Yang Taochun, Li Guoqiang. Research on the failure mode of steel-concrete composite beam under contact detonation[J]. Structural Engineers, 2009, 25(1):34-40. (in Chinese)
[12] 匡志平, 杨秋华, 崔满. 爆炸荷载下钢筋混凝土梁的试验研究和破坏形态[J]. 同济大学学报(自然科学版), 2009, 37(9):1153-1156. Kuang Zhiping, Yang Qiuhua, Cui Man. Experiment research and failure modes analyses of RC-beams under blast loading[J]. Journal of Tongji University (Natural Science), 2009, 37(9):1153-1156. (in Chinese)
[13] 钱七虎, 王明洋. 高等防护结构计算理论[M]. 南京:凤凰科学出版社, 2009:242-248. Qian Qihu, Wang Mingyang. Calculation theory for advanced protective structures[M]. Nanjing:Phonix Science Press, 2009:242-248. (in Chinese)
[14] Park R, Gamble W L. Membrane action in slabs[M]//Reinforced Concrete Slab. John Wiley& Sons, New York, NY., 1980:526-610.
[15] 成松松, 陈万祥, 郭志昆, 等. 考虑面力效应的端约束轻骨料混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2018, 39(12):56-65. Cheng Songsong, Chen Wanxiang, Guo Zhikun, et al. Flexural tests on lightweight aggregate concrete reinforced beams with boundary constraints induced membrane actions[J]. Journal of Building Structures, 2018, 39(12):56-65. (in Chinese)
[16] Park R, Gamble W L. Reinforced concrete slabs[M]. New York:John Wiley & Sons, 2000:1255-1257.
[17] 郭志昆.考虑面力作用的浅埋结构抗力研究[D]. 南京:解放军工程兵工程学院, 1995:89-96. Guo Zhikun. Influence of membrane effects on the strength of shallow-buried structures[D]. Nanjing:Engineering Institute of Engineering Corps, PLAUST, 1995:89-96. (in Chinese)
[18] Chen L, Fang Q, Guo Z, et al. An improved analytical method for restrained RC structures subjected to static and dynamic loads[J]. International Journal of Structural Stability and Dynamics, 2014, 14(1):1350052.
[19] Xing J Z, Wang Y G. Free vibrations of a beam with elastic end restraints subject to a constant axial load[J]. Archive of Applied Mechanics, 2013, 83(2):241-252.
[20] Song C M, Wang M Y, Liu B. Effects of boundary restraints on dynamic responses of a beam under blast loadings (Ⅰ)-theoretical study and analysis[J]. Journal of Vibration & Shock, 2014, 33(5):82-86.
[21] 王丹, 郭志昆, 陈万祥, 等. 混杂纤维轻骨料混凝土性能试验研究[J]. 建筑结构, 2014, 44(14):21-23. Wang Dan, Guo Zhikun, Chen Wanxiang, et al. Experiment stduy on performance of lightweight aggregate concrete reinforced by hybrid fiber[J]. Building Structure, 2014, 44(14):21-23. (in Chinese)
[22] 李道西, 韩俊. 基于简化的绝对体积法自密实混凝土配合比设计研究[J]. 中国农村水利水电, 2014, 1(5):105-106. Li Daoxi, Han Jun. Research on self-compacting concrete mix design based on simplified absolute volume method[J]. China Rural Water and Hydropower, 2014, 1(5):105-106. (in Chinese)
[23] Cui H Z, Lo T Y, Memon S A. Effect of lightweight aggregates on the mechanical properties and brittleness of lightweight aggregate concrete[J]. Construction and Building Materials, 2012, 35:149-158.
[24] He Y, Zhang X, Zhang Y. Effects of particle characteristics of lightweight aggregate on mechanical properties of lightweight aggregate concrete[J]. Construction & Building Materials, 2014, 72(7):270-282.
[25] GB/T 17431.1-2010, 轻集料及其试验方法(第1部分):轻集料[S]. 北京:中国标准出版社, 2010. GB/T 17431.1-2010, Lightweight aggregate and its test methods-Part 1:Lightweight aggregates[S]. Beijing:Standards Press of China, 2010. (in Chinese)
[26] GB/T 50081-2003, 普通混凝土力学性能试验方法标准[S]. 北京:中国建筑工业出版社, 2003. GB/T 50081-2003, Standard for test method of mechanical properties on ordinary concrete[S]. Beijing:China Architecture & Building Press, 2003. (in Chinese)
[27] JGJ 51-2002,轻骨料混凝土技术规程[S]. 北京:中国建筑工业出版社, 2002. JGJ 51-2002, Technical specification for lightweight aggregate concrete[S]. Beijing:China Architecture & Building Press, 2002. (in Chinese)
[28] Chen Wanxiang, Zhou Zixin, Zou Huihui, et al. Predictions of residual carrying-capacities for fire and near-field blast-damaged reactive powder concrete-filled steel tube columns[J]. International Journal of Protective Structures, 2018, 9(4):525-553.
[29] Sadovskyi M A. Mechanical action of air shock waves of explosion based on experimental data[M]. Moscow:IzdAkadNauk SSSR, 1952.
[30] Baker W E. Explosions in air[M]. Austin, USA:University of Texas Press, 1973:54-68.
[31] Brode H L. Blast wave from a spherical charge[J]. PhysFluids, 1959, 2(2):217-218.
[32] Henrych J. The dynamics of explosion and its use[M]. Amster dam:Elsevier, 1979:96-101.
[33] 李翼祺, 马素贞. 爆炸力学[M]. 北京:科学出版社, 1992:88-96. Li Yiqi, Ma Suzhen. Explosive mechanics[M]. Beijing:Science Press, 1992:88-96. (in Chinese)
[34] 方秦, 柳锦春. 地下防护结构[M]. 北京:中国水利水电出版社, 2010:61-63. Fang Qin, Liu Jinchun. Underground protective structure[M]. Beijing:China Water & Power Press, 2010:61-63. (in Chinese)
[35] Department of the Army, USA.TM5-1300 structures to resist the effects of accidental explosions[S]. Washington:Department of the Army, 1990.
[36] 叶序双. 爆炸作用基础[M]. 南京:解放军理工大学工程兵学院, 2003:242-248. Ye Xushuang. Foundation of explosion effect[M]. Nanjing:Engineering Institute of Engineering Corps, 2003:242-248. (in Chinese)
[37] 孙珊珊, 赵均海, 张常光. 爆炸荷载下钢管混凝土墩柱柱面压力分布研究[J]. 爆破, 2018, 35(2):16-22. Sun Shanshan, Zhao Junhai, Zhang Changguang. Study on cylinder overpressure distribution of concrete-filled steel tube pier subjected to explosive loading[J]. Blasting, 2018, 35(2):16-22. (in Chinese)
[38] 柳锦春, 方秦, 龚自明, 等. 爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析[J]. 爆炸与冲击, 2003, 23(1):25-30. Liu Jinchun, Fang Qin, Gong Ziming, et al. Analysis of dynamic responses and failure modes of R/C beams under blast loading[J]. Explosion and Shock Waves, 2003, 23(1):25-30. (in Chinese)
[1] 卢嘉茗, 解琳琳, 李爱群, 曾德民, 杨参天, 杜红凯. 建筑隔震金属柔性管道抗震性能试验研究[J]. 工程力学, 2020, 37(5): 208-216.
[2] 冯峥, 李传习, 潘仁胜, 刘科强, 聂洁. 密集横隔板UHPC箱梁锚固区局部承压性能研究[J]. 工程力学, 2020, 37(5): 94-103,119.
[3] 徐龙河, 肖水晶. 内置碟簧自复位混凝土剪力墙基于性能的截面设计方法[J]. 工程力学, 2020, 37(4): 70-77,86.
[4] 于金光, 刘利明, 郝际平. 部分组合框架-钢板剪力墙边框柱设计方法研究[J]. 工程力学, 2020, 37(2): 98-110.
[5] 杨勇, 孙东德, 张超瑞, 薛亦聪, 陈阳, 于云龙. 钢管高强混凝土叠合构件受剪承载能力试验研究[J]. 工程力学, 2019, 36(8): 182-191.
[6] 班慧勇, 白日升, 刘明, 李文斌, 白音. 钛-钢复合钢材力学性能及本构模型研究[J]. 工程力学, 2019, 36(7): 57-66.
[7] 邹慧辉, 陈万祥, 郭志昆, 周子欣. 火灾后钢管RPC柱近距离爆炸残余承载力研究[J]. 工程力学, 2019, 36(7): 184-196.
[8] 杨勇, 薛亦聪, 于云龙. 预制装配型钢混凝土梁受剪承载力试验与计算方法研究[J]. 工程力学, 2019, 36(6): 92-100.
[9] 于云龙, 杨勇, 薛亦聪, 刘亚平, 蒋雪雅. 型钢混凝土空腹叠合梁受剪承载力试验研究[J]. 工程力学, 2019, 36(3): 214-223.
[10] 黄福云, 龙腾飞, 杨芳芳, 董锐. 钢管混凝土单圆管拱模型重力失真影响振动台试验研究[J]. 工程力学, 2019, 36(12): 52-61.
[11] 崔兆彦, 徐明, 陈忠范, 王飞. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96-103,118.
[12] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
[13] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[14] 齐欣, 许浒, 余志祥, 赵雷, 孟庆成. 柔性拦截结构中减压环动态力学性能试验研究[J]. 工程力学, 2018, 35(9): 188-196.
[15] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[2] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[3] 翟长海;李 爽;谢礼立;孙亚民. 钢筋混凝土规则框架结构非弹性位移比谱研究[J]. 工程力学, 2009, 26(9): 80 -086 .
[4] 何 政;金建平;宋继广. 带载状态下CFRP约束混凝土圆柱膨胀比试验研究[J]. 工程力学, 2009, 26(9): 145 -151, .
[5] 熊铁华;梁枢果;邹良浩. 风荷载下输电铁塔的失效模式及其极限荷载[J]. 工程力学, 2009, 26(12): 100 -104, .
[6] 白永强;汪 彤;吕良海;孙 亮;帅 健;陈 钢. 拉弯联合载荷下弹塑性J积分估算方法研究[J]. 工程力学, 2010, 27(03): 6 -009, .
[7] 赵 波;吕振华;吕毅宁. 基于理论解的三种胶接接头简化有限元单元[J]. 工程力学, 2010, 27(7): 1 -009, .
[8] 张 衡;魏德敏. 考虑温度影响的混凝土微观断裂模型[J]. 工程力学, 2010, 27(10): 14 -020 .
[9] 张晓晶;杨 慧;汪 海. 细观结构对缝合复合材料力学性能的影响分析[J]. 工程力学, 2010, 27(10): 34 -041 .
[10] 童根树;俞一弓. 弯曲型支撑-框架弹塑性稳定的简化分析[J]. 工程力学, 2011, 28(1): 186 -191 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日