工程力学 ›› 2020, Vol. 37 ›› Issue (5): 1-14.doi: 10.6052/j.issn.1000-4750.2019.07.ST10

• 综述 •    下一篇

玄武岩纤维复合材料性能提升及其新型结构

吴智深1,2,3, 汪昕2,3, 史健喆3   

  1. 1. 东南大学玄武岩纤维生产及应用技术国家地方联合工程研究中心, 江苏, 南京 210019;
    2. 东南大学土木工程学院, 江苏, 南京 211189;
    3. 东南大学城市工程科学技术研究院, 江苏, 南京 211189
  • 收稿日期:2019-07-15 修回日期:2019-12-19 出版日期:2020-05-25 发布日期:2019-12-20
  • 通讯作者: 吴智深(1961-),男,江苏人,教授,博士,日本工程院院士(外籍),主要从事纤维增强复合材料及其结构加固增强技术以及结构健康监测及智能化研究工作(E-mail:zswu@seu.edu.cn). E-mail:zswu@seu.edu.cn
  • 作者简介:汪昕(1980-),男,江苏人,教授,博士,主要从事纤维增强复合材料(FRP)-结构的一体化设计及其高性能和长寿命研究工作(E-mail:xinwang@seu.edu.cn);史健喆(1990-),男,江苏人,博士,主要从事纤维增强复合材料(FRP)及预应力FRP增强混凝土结构研究工作(E-mail:sjzseu@163.com).
  • 基金资助:
    国家重点研发计划项目(2017YFC0703000);中国工程院咨询研究项目(2017-ZD-04)

ADVANCEMENT OF BASALT FIBER-REINFORCED POLYMERS (BFRPS) AND THE NOVEL STRUCTURES REINFORCED WITH BFRPS

WU Zhi-shen1,2,3, WANG Xin2,3, SHI Jian-zhe3   

  1. 1. National and Local Joint Engineering Research Center of Basalt Fiber Production and Application Technology, Southeast University, Nanjing 210019, China;
    2. School of Civil Engineering, Southeast University, Nanjing 211189, China;
    3. International Institute for Urban Systems Engineering, Southeast University, Nanjing 211189, China
  • Received:2019-07-15 Revised:2019-12-19 Online:2020-05-25 Published:2019-12-20

摘要: 纤维增强复合材料(FRP)具有轻质、高强、耐腐蚀、耐疲劳的优点,是结构加固增强的理想材料。其中,具有环境友好特性的玄武岩纤维复合材料(BFRP)有望推动工程结构的绿色可持续化发展,得到国家和地方政府的大力支持。为进一步提升BFRP增强工程结构的性能与寿命,还需从BFRP材料性能和结构增强形式等方面进行改善。该文阐述了BFRP高性能化技术,并从设计理念、关键技术和力学性能三个方面,对三种新型BFRP增强结构形式进行了综述,包括高耐久损伤可控BFRP筋/网格-钢筋混合配置混凝土结构、BFRP型材-混凝土组合结构以及BFRP拉索大跨结构,并对BFRP新建结构的发展提出了建议和展望。

关键词: 玄武岩纤维复合材料(BFRP), 高性能化, 高耐久, 损伤可控, 组合桥面板, 大跨斜拉桥

Abstract: The characteristics of light weight, high strength, corrosion- and fatigue-resistance make fiber-reinforced polymers (FRPs) serve as a type of ideal material for structural strengthening and reinforcement. Environmentally friendly basalt FRPs (BFRPs) are considered as a feasible type of material stimulating the development of sustainability of infrastructures and are supported by the national and local governments in their strategies. Further improvements in terms of the performances of BFRPs and types of structures reinforced with BFRPs are necessary for the enhancement of the performance and the service life of infrastructures reinforced with BFRP. The advancement technologies of BFRP are elaborated. Furthermore, three novel structures reinforced with BFRPs including concrete structures reinforced with BFRP bars/grids of high durability and damage controllability, BFRP-shell-concrete composite structure, and long-span structure with BFRP cable, are reviewed in terms of design philosophies, key technologies, and mechanical behaviors. Finally, several strategic recommendations are proposed for the prospects of newly-built structures reinforced with BFRP.

Key words: basalt fiber-reinforced polymer (BFRP), advancement, durability, damage controllability, composite bridge deck, long-span cable-stayed bridge

中图分类号: 

  • TU599
[1] Zou P X W. Long-Term properties and transfer length of fiber-reinforced polymers[J]. Journal of Composites for Construction, 2003, 7(1):10-19.
[2] Yamaguchi T, Kato Y, Nishimura T. Creep rupture of frp rods made of aramid, carbon and glass fibers[C]. Proceedings of the Third International Symposium on Non-metallic Reinforcement for Concrete Structures. (FRPRCS-3), 1997:179-186.
[3] Sim J, Park C, Moon D Y. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites Part B:Engineering, 2005, 36(6/7):504-512.
[4] Wang X, Shi J, Liu J, Yang L, Wu Z. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application[J]. Materials & Design, 2014, 59:558-564.
[5] 吴智深. 玄武岩纤维及其复合材料作为建材的创新应用[J]. 江苏建材, 2018, 4:15-22. Wu Zhishen. Innovative applications of basalt fibers and composites as building materials[J]. Jiangsu Building Materials, 2018, 4:15-22. (in Chinese)
[6] 陈兴芬. 连续玄武岩纤维的高强度化研究[D]. 南京:东南大学, 2018. Chen Xingfen. Study on the high strength and performance of continuous basalt fiber[D]. Nanjing:Southeast University, 2018. (in Chinese)
[7] 吴智深, 刘建勋. 一种用于连续玄武岩纤维大规模生产的池窑及加热方法[P]. 中国:201410130881.9, 2014. Wu Zhishen, Liu Jianxun. A furnace and heating method for mass production of continuous basalt fiber[P]. China:201410130881.9, 2014. (in Chinese)
[8] Liu J, Yang J, Huo H, et al. Study on the effect of different Fe2O3/ZrO2 ratio on the properties of silicate glass fibers[J]. Advances in Materials Science & Engineering, 2017, 2017(10):1-7.
[9] Liu J, Yang J, Chen M, et al. Effect of SiO2, Al2O3 on heat resistance of basalt fiber[J]. Thermochimica Acta, 2018, 660:56-60.
[10] Ali N M, Wang X, Wu Z. Integrated performance of FRP tendons with fiber hybridization[J]. Journal of Composites for Construction, 2014, 18(3):A4013007.
[11] Wu Z, Wang X, Iwashita K, et al. Tensile fatigue behaviour of FRP and hybrid FRP sheets[J]. Composites Part B:Engineering, 2010, 41(5):396-402.
[12] Shi J W, Zhu H, Dai J G, et al. Effect of rubber toughening modification on the tensile behavior of FRP composites in concrete-based alkaline environment[J]. Journal of Materials in Civil Engineering, 2015, 27(12):04015054.
[13] 赵杏. FRP拉索疲劳损伤演化规律和寿命可控设计方法研究[D]. 南京:东南大学, 2018. Zhao Xing. Study on fatigue damage evolution and life controllable design method of FRP cables[D]. Nanjing:Southeast University, 2018. (in Chinese)
[14] Wang X, Shi J, Wu Z, et al. Creep strain control by pretension for basalt fiber-reinforced polymer tendon in civil applications[J]. Materials & Design, 2016, 89:1270-1277.
[15] Shi J, Wang X, Wu Z, Zhu Z. Creep behavior enhancement of a basalt fiber-reinforced polymer tendon[J]. Construction and Building Materials, 2015, 94:750-757.
[16] 呉智深, 山本誠也. 連続バサルト繊維ロッドによる FRP コンクリート構造の基本性状に関する研究[C]. 第68回日本土木学会全国大会,千葉縣習志野市, 2013. Wu Zhishen, Yamamoto M. Study on the basic performance of FRP-concrete Structures using basalt fibre reinforced polymer rods[C]. The 68th Annual Meeting of the Japan Society of Civil Engineers JSCE, 2013. (in Japanese)
[17] 刘滢. FRP网格-钢筋混凝土组合柱基本性能研究[D]. 南京:东南大学, 2015. Liu Ying. Study on Performance of FRP Grids-steel Reinforced Concrete Column[D]. Nanjing:Southeast University, 2015. (in Chinese)
[18] Ibrahim A M A, Wu Z, Fahmy M F M, et al. Experimental study on cyclic response of concrete bridge columns reinforced by steel and basalt FRP reinforcements[J]. Journal of Composites for Construction, 2016, 20(3):04015062.
[19] Ibrahim A M A, Fahmy M F M, Wu Z. 3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading[J]. Composite Structures, 2016, 143:33-52.
[20] 石煜威. 海洋环境BFRP-钢筋混合配筋混凝土梁耐久性能研究[D]. 南京:东南大学, 2019. Shi Yuwei. durability study and theoretical analysis on concrete beams reinforced with BFRP with steel bars exposed to marine environments[D]. Nanjing:Southeast University, 2019. (in Chinese)
[21] Lopez-Anido R, Dutta P, Bouzon J, et al. Fatigue evaluation of FRP-concrete bridge deck on steel girders at high temperature[J]. Society for the Advancement of Material and Process Engineering, Evolving and Revolutionary Technologies for the New Millennium, 1999, 44:1666-1675.
[22] Cheng L, Seible F, Zhao L, et al. Assessment of a steel-free fiber reinforced polymer-composite modular bridge system[J]. Journal of Structural Engineering, 2005, 131(3):498-506.
[23] 杨勇, 刘玉擎, 范海丰. FRP-混凝土组合桥面板疲劳性能试验研究[J]. 工程力学, 2011, 28(6):66-73. Yang Yong, Liu Yuqing, Fan Haifeng. Experimental study on the fatigue behavior of FRP-concrete composite decks[J]. Engineering Mechanics, 2011, 28(6):66-73. (in Chinese)
[24] 孙沈鹏. BFRP型材-混凝土组合桥面板基本性能研究[D]. 南京:东南大学, 2015. Sun Shenpeng. Research on fundamental behavior of BFRP form-concrete composite deck slab[D]. Nanjing:Southeast University, 2015. (in Chinese)
[25] 邓文杰. BFRP型材-混凝土组合桥面板在长期荷载下的性能研究[D]. 南京:东南大学, 2017. Den Wenjie. Mechanical behavior of BFRP shell-concrete composite bridge deck under long-term loads[D]. Nanjing:Southeast University, 2017. (in Chinese)
[26] 杨意志. BFRP型材-混凝土组合桥面板优化设计及其长期性能研究[D]. 南京:东南大学, 2018. Yang Yizhi. Optimization design and long-term performance of BFRP shell-concrete composite bridge deck[D]. Nanjing:Southeast University, 2018. (in Chinese)
[27] 王言磊, 郝庆多, 欧进萍. GFRP板与混凝土粘结性能试验[J]. 哈尔滨工业大学学报, 2009(2):27-31. Wang Yanlei, Hao Qingduo, Ou Jinping. Experimental investigation on bond behavior between GFRP plate and concrete[J]. Journal of Harbin Institute of Technology, 2009(2):27-31. (in Chinese)
[28] Wang X, Zhou J, Ding L, et al. Static behavior of circumferential stress releasing anchor for large-capacity FRP cable[J]. Journal of Bridge Engineering, 2020, 25(1):04019127.
[29] Peng Z, Ding L, Wang X, et al. Prediction of tensile strength of FRP cable considering random strength distribution[C]. Ninth International Conference on FRP Composites in Civil Engineering (CICE2018), Paris, France, 2018.
[30] Wang X, Wu Z. Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges[J]. Composite Structures, 2010, 92(10):2582-2590.
[31] Wang X, Wu Z. Integrated high-performance thousandmeter scale cable-stayed bridge with hybrid FRP cables[J]. Composites Part B:Engineering, 2010, 41(2):166-175.
[32] Wang X, Wu Z. Modal damping evaluation of hybrid FRP cable with smart dampers for long-span cablestayed bridges[J]. Composite Structures, 2011, 93(4):1231-1238.
[1] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[2] 赵秋, 蔡文平, 陈宝春. 基于平钢板连接件的钢-RPC组合桥面板抗剪试验研究[J]. 工程力学, 2017, 34(8): 171-179.
[3] 孙利民, 谢文. 超大跨斜拉桥多点振动台试验研究[J]. 工程力学, 2016, 33(11): 38-48.
[4] 林楷奇, 解琳琳, 陆新征, 卢啸. 基于开源计算程序的特大跨斜拉桥地震灾变及倒塌分析[J]. 工程力学, 2016, 33(1): 72-80.
[5] 宫成, 刘志文, 谢钢, 龚平. 高墩大跨斜拉桥悬臂施工期风致振动控制[J]. 工程力学, 2015, 32(增刊): 122-128.
[6] 杨 勇;霍旭东;薛建阳;周丕健;聂建国. 钢板-混凝土组合桥面板疲劳性能试验研究[J]. 工程力学, 2011, 28(8): 37-044.
[7] 杨 勇;刘玉擎;范海丰. FRP-混凝土组合桥面板疲劳性能试验研究[J]. 工程力学, 2011, 28(6): 66-073.
[8] 郑荣跃;简小生;俞凯磊;杨银赞. 基于事件树分析法的大跨斜拉桥施工事故分析[J]. 工程力学, 2008, 25(增刊Ⅰ): 0-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 崔京浩. 灾害的严重性及土木工程在防灾减灾中的重要性①[J]. 工程力学, 2006, 23(增刊Ⅱ): 0 -077 .
[2] 何 勇;龚顺风;金伟良. 考虑几何非线性海底悬跨管道随机振动分析方法[J]. 工程力学, 2009, 26(10): 233 -239 .
[3] 刘艳红;陈庆远;张惠明. 含固支边的压电层合板的解析解[J]. 工程力学, 2009, 26(12): 6 -011 .
[4] 吴帅兵;李典庆;周创兵;. 结构可靠度分析中变量相关时三种变换方法的比较[J]. 工程力学, 2011, 28(5): 41 -048, .
[5] 赵平;唐克东;刘祚秋;陈文义;李树瑶. 大型多纵梁斜交渡槽结构受力特性[J]. 工程力学, 2001, 18(3): 125 -130 .
[6] 周又和;张建平;郑晓静. 弹性地基扇形权弯曲问题的复 Bessel 函数级数解[J]. 工程力学, 1999, 16(5): 93 -100, .
[7] 钟阳;刘季. 路面车辆随机动荷载理论分析[J]. 工程力学, 1993, 10(4): 26 -31 .
[8] 郑健龙. 考虑横向剪切效应时圆柱型正交各向异性球面扁壳在横向载荷作用下的非线性压屈[J]. 工程力学, 1991, 8(1): 25 -35 .
[9] 施 刚,班慧勇,石永久,王元清. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1): 1 -13 .
[10] 徐龙河, 肖水晶, 卢啸, 李忠献. 钢筋混凝土剪力墙基于变形和滞回耗能非线性组合的损伤演化分析[J]. 工程力学, 2017, 34(8): 117 -124 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日